{"title":"Fault Signal Perception of Nanofiber Sensor for 3D Human Motion Detection Using Multi-Task Deep Learning","authors":"Yun Liu","doi":"10.1142/s0219467825500603","DOIUrl":null,"url":null,"abstract":"Once a fault occurs in the nanofiber sensor, the scientific and reliable three-dimensional (3D) human motion detection results will be compromised. It is necessary to accurately and rapidly perceive the fault signals of the nanofiber sensor and determine the type of fault, to enable it to continue operating in a sustained and stable manner. Therefore, we propose a fault signal perception method for 3D human motion detection nanofiber sensor based on multi-task deep learning. First, through obtaining the fault characteristic parameters of the nanofiber sensor, the fault of the nanofiber sensor is reconstructed to complete the fault location of the nanofiber sensor. Second, the fault signal of the nanofiber sensor is mapped by the penalty function, and the feature extraction model of the fault signal of the nanofiber sensor is constructed by combining the multi-task deep learning. Finally, the multi-task deep learning algorithm is used to calculate the sampling frequency of the fault signal, and the key variable information of the fault of the nanofiber sensor is extracted according to the amplitude of the state change of the nanofiber sensor, to realize the perception of the fault signal of the nanofiber sensor. The results show that the proposed method can accurately perceive the fault signal of a nanofiber sensor in 3D human motion detection, the maximum sensor fault location accuracy is 97%, and the maximum noise content of the fault signal is only 5 dB, which shows that the method can be widely used in fault signal perception.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467825500603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Once a fault occurs in the nanofiber sensor, the scientific and reliable three-dimensional (3D) human motion detection results will be compromised. It is necessary to accurately and rapidly perceive the fault signals of the nanofiber sensor and determine the type of fault, to enable it to continue operating in a sustained and stable manner. Therefore, we propose a fault signal perception method for 3D human motion detection nanofiber sensor based on multi-task deep learning. First, through obtaining the fault characteristic parameters of the nanofiber sensor, the fault of the nanofiber sensor is reconstructed to complete the fault location of the nanofiber sensor. Second, the fault signal of the nanofiber sensor is mapped by the penalty function, and the feature extraction model of the fault signal of the nanofiber sensor is constructed by combining the multi-task deep learning. Finally, the multi-task deep learning algorithm is used to calculate the sampling frequency of the fault signal, and the key variable information of the fault of the nanofiber sensor is extracted according to the amplitude of the state change of the nanofiber sensor, to realize the perception of the fault signal of the nanofiber sensor. The results show that the proposed method can accurately perceive the fault signal of a nanofiber sensor in 3D human motion detection, the maximum sensor fault location accuracy is 97%, and the maximum noise content of the fault signal is only 5 dB, which shows that the method can be widely used in fault signal perception.