Laser direct forming submicron Cu-rich particle structural TiZrNbCux medium-entropy alloy coatings to achieve desirable anti-bacterial property

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Junfeng Wang, Yaxiong Guo, Jiawang Wu, Fangping Wang, Xiaojuan Shang, Jing Zhang, Qibin Liu
{"title":"Laser direct forming submicron Cu-rich particle structural TiZrNbCux medium-entropy alloy coatings to achieve desirable anti-bacterial property","authors":"Junfeng Wang, Yaxiong Guo, Jiawang Wu, Fangping Wang, Xiaojuan Shang, Jing Zhang, Qibin Liu","doi":"10.2351/7.0001229","DOIUrl":null,"url":null,"abstract":"To develop high-performance medical alloy coatings that can reduce the risk of postoperative infection, TiZrNbCux refractory medium-entropy alloy (RMEA) coatings are designed and prepared on the Ti6Al4V alloy. The effects of varying Cu additions on the microstructure, micro/nano-hardness, elastic modulus, wear resistance, corrosion resistance, and antibacterial properties are investigated. The microstructure reveals that the RMEA coatings comprise body-centered-cubic dendrites and an Mo2Si-type interdendritic (Ti, Zr)2Cu phase. Also, the contents and dimensions of (Ti, Zr)2Cu gradually increase with the increasing Cu contents. The increased amounts of Cu atoms are beneficial for the improvement of hardness and elastic modulus, but contribute little to wear resistance. Meanwhile, the electrochemical polarization curve reflects that Cu-containing RMEA coatings show superior corrosion resistance. The antibacterial test on the Cu0.1 RMEA coating demonstrates a 99.95% antibacterial rate against S. aureus after coculturing for 18 h, indicating its novel antibacterial property. Thus, TiZrNbCux RMEA coatings present huge potential in medical applications for implants.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"25 4","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2351/7.0001229","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To develop high-performance medical alloy coatings that can reduce the risk of postoperative infection, TiZrNbCux refractory medium-entropy alloy (RMEA) coatings are designed and prepared on the Ti6Al4V alloy. The effects of varying Cu additions on the microstructure, micro/nano-hardness, elastic modulus, wear resistance, corrosion resistance, and antibacterial properties are investigated. The microstructure reveals that the RMEA coatings comprise body-centered-cubic dendrites and an Mo2Si-type interdendritic (Ti, Zr)2Cu phase. Also, the contents and dimensions of (Ti, Zr)2Cu gradually increase with the increasing Cu contents. The increased amounts of Cu atoms are beneficial for the improvement of hardness and elastic modulus, but contribute little to wear resistance. Meanwhile, the electrochemical polarization curve reflects that Cu-containing RMEA coatings show superior corrosion resistance. The antibacterial test on the Cu0.1 RMEA coating demonstrates a 99.95% antibacterial rate against S. aureus after coculturing for 18 h, indicating its novel antibacterial property. Thus, TiZrNbCux RMEA coatings present huge potential in medical applications for implants.
激光直接形成亚微米富铜颗粒结构 TiZrNbCux 中熵合金涂层,实现理想的抗菌性能
为了开发可降低术后感染风险的高性能医用合金涂层,我们在 Ti6Al4V 合金上设计并制备了 TiZrNbCux 难熔中熵合金(RMEA)涂层。研究了不同铜添加量对微观结构、微/纳米硬度、弹性模量、耐磨性、耐腐蚀性和抗菌性能的影响。显微结构显示,RMEA 涂层由体心立方枝晶和 Mo2Si- 型枝晶间(Ti、Zr)2Cu 相组成。此外,随着铜含量的增加,(Ti,Zr)2Cu 的含量和尺寸也逐渐增大。Cu 原子含量的增加有利于提高硬度和弹性模量,但对耐磨性的影响很小。同时,电化学极化曲线反映出含铜的 RMEA 涂层具有优异的耐腐蚀性。对 Cu0.1 RMEA 涂层进行的抗菌测试表明,在共培养 18 小时后,其对金黄色葡萄球菌的抗菌率达到 99.95%,这表明其具有新颖的抗菌特性。因此,TiZrNbCux RMEA 涂层在植入物的医疗应用中具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信