A comparative assessment of gravitational field modeling methods for binary asteroid landing

IF 2.7 1区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Tongge Wen, Xiangyuan Zeng, Ziwen Li, Yang Yu
{"title":"A comparative assessment of gravitational field modeling methods for binary asteroid landing","authors":"Tongge Wen,&nbsp;Xiangyuan Zeng,&nbsp;Ziwen Li,&nbsp;Yang Yu","doi":"10.1007/s42064-024-0202-z","DOIUrl":null,"url":null,"abstract":"<div><p>The tradeoff between accuracy and efficiency in gravitational field modeling for binary asteroid landing is one of the challenges in dynamical analyses. Four representative gravitational modeling methods are employed and compared in this study. These are the sphere–sphere model, ellipsoid–sphere model, inertia integral-polyhedron method, and finite element method. This study considers the differences between these four models, particularly their effects on the landing dynamics of a lander. A framework to simulate the coupled orbit–attitude motion of a lander in a binary system is first established. Numerical simulations are then performed on the natural landings on the second primary of the (66391) Moshup–Squannit system. The results show significant differences in the final landing dispersions, settling time, and sliding distance when applying the simplified models. On the basis of the modeling accuracy and computational efficiency, the finite element method should be chosen for future missions.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-024-0202-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The tradeoff between accuracy and efficiency in gravitational field modeling for binary asteroid landing is one of the challenges in dynamical analyses. Four representative gravitational modeling methods are employed and compared in this study. These are the sphere–sphere model, ellipsoid–sphere model, inertia integral-polyhedron method, and finite element method. This study considers the differences between these four models, particularly their effects on the landing dynamics of a lander. A framework to simulate the coupled orbit–attitude motion of a lander in a binary system is first established. Numerical simulations are then performed on the natural landings on the second primary of the (66391) Moshup–Squannit system. The results show significant differences in the final landing dispersions, settling time, and sliding distance when applying the simplified models. On the basis of the modeling accuracy and computational efficiency, the finite element method should be chosen for future missions.

双小行星着陆引力场建模方法比较评估
双小行星着陆引力场建模的精度和效率之间的权衡是动力学分析的挑战之一。本研究采用了四种具有代表性的重力场建模方法并进行了比较。它们分别是球-球模型、椭球-球模型、惯性积分多面体法和有限元法。本研究考虑了这四种模型之间的差异,特别是它们对着陆器着陆动力学的影响。首先建立了模拟双星系统中着陆器轨道-姿态耦合运动的框架。然后对莫舒普-斯坎尼特(66391)系统第二主星的自然着陆进行了数值模拟。结果表明,在应用简化模型时,最终着陆分散度、沉降时间和滑动距离都有很大差异。根据建模精度和计算效率,未来的飞行任务应选择有限元方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astrodynamics
Astrodynamics Engineering-Aerospace Engineering
CiteScore
6.90
自引率
34.40%
发文量
32
期刊介绍: Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信