Enhancing Gamma-Ray Burst Detection: Evaluation of Neural Network Background Estimator and Explainable AI Insights

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Riccardo Crupi, G. Dilillo, G. Della Casa, Fabrizio Fiore, Andrea Vacchi
{"title":"Enhancing Gamma-Ray Burst Detection: Evaluation of Neural Network Background Estimator and Explainable AI Insights","authors":"Riccardo Crupi, G. Dilillo, G. Della Casa, Fabrizio Fiore, Andrea Vacchi","doi":"10.3390/galaxies12020012","DOIUrl":null,"url":null,"abstract":"The detection of Gamma-Ray Bursts (GRBs) using spaceborne X/gamma-ray photon detectors depends on a reliable background count rate estimate. This study focuses on evaluating a data-driven background estimator based on a neural network designed to adapt to various X/gamma-ray space telescopes. Three trials were conducted to assess the effectiveness and limitations of the proposed estimator. Firstly, quantile regression was employed to obtain an estimation with a confidence range prediction. Secondly, we assessed the performance of the neural network, emphasizing that a dataset of four months is sufficient for training. We tested its adaptability across various temporal contexts, identified its limitations and recommended re-training for each specific period. Thirdly, utilizing Explainable Artificial Intelligence (XAI) techniques, we delved into the neural network output, determining distinctions between a network trained during solar maxima and one trained during solar minima. This entails conducting a thorough analysis of the neural network behavior under varying solar conditions.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"30 8","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/galaxies12020012","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The detection of Gamma-Ray Bursts (GRBs) using spaceborne X/gamma-ray photon detectors depends on a reliable background count rate estimate. This study focuses on evaluating a data-driven background estimator based on a neural network designed to adapt to various X/gamma-ray space telescopes. Three trials were conducted to assess the effectiveness and limitations of the proposed estimator. Firstly, quantile regression was employed to obtain an estimation with a confidence range prediction. Secondly, we assessed the performance of the neural network, emphasizing that a dataset of four months is sufficient for training. We tested its adaptability across various temporal contexts, identified its limitations and recommended re-training for each specific period. Thirdly, utilizing Explainable Artificial Intelligence (XAI) techniques, we delved into the neural network output, determining distinctions between a network trained during solar maxima and one trained during solar minima. This entails conducting a thorough analysis of the neural network behavior under varying solar conditions.
增强伽玛射线暴探测:评估神经网络背景估计器和可解释的人工智能启示
利用空间X/伽马射线光子探测器探测伽马射线暴(GRB)取决于可靠的背景计数率估计。本研究的重点是评估一种基于神经网络的数据驱动背景估算器,该估算器旨在适应各种 X 射线/伽马射线空间望远镜。为了评估所提出的估计器的有效性和局限性,进行了三次试验。首先,我们采用了量子回归法来获得具有置信区间预测的估计值。其次,我们评估了神经网络的性能,强调四个月的数据集足以进行训练。我们测试了其在不同时间背景下的适应性,确定了其局限性,并建议针对每个特定时期进行再训练。第三,利用可解释人工智能(XAI)技术,我们深入研究了神经网络的输出,确定了在太阳最大期间训练的网络与在太阳最小期间训练的网络之间的区别。这需要对不同太阳条件下的神经网络行为进行全面分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信