Qingrui Li, Zhenyang Ding*, Yongle Li*, Kun Liu, Rongyang Zhu, Junfeng Jiang and Tiegen Liu,
{"title":"Estimation of Medium Depolarization Index with Noise Immunity in Catheter-Based PS-OCT toward Vascular Plaques Detection","authors":"Qingrui Li, Zhenyang Ding*, Yongle Li*, Kun Liu, Rongyang Zhu, Junfeng Jiang and Tiegen Liu, ","doi":"10.1021/cbmi.3c00119","DOIUrl":null,"url":null,"abstract":"<p >Medium depolarization imaging by catheter-based polarization-sensitive optical coherence tomography (PS-OCT) can provide valuable insight into significant features of lipid, macrophages, and cholesterol crystals in atherosclerotic vulnerable plaques. In this paper, we demonstrate a method to achieve an accurate estimation of the medium depolarization index (EMDI) with noise immunity in catheter-based PS-OCT. EMDI is calculated by an iterative approximation based on Lu–Chipman matrix decomposition and Frobenius norm judgment of incoherent averaging of Mueller matrices. Monte Carlo simulation results verify that the medium depolarization measurement by EMDI is 3.3 times more accurate compared with those of the depolarization index (DI) and degree of polarization uniformity (DOPU). In experiments, we design a microsphere suspension with various concentrations and measure EMDI under different additive noise. Consistently, the measurement accuracy by EMDI is increased 2.85 times compared to those by DI and DOPU. For vascular plaques detection, we use protein and cholesterol gel as plaque phantoms. Based on PS-OCT images of plaque phantom in vitro and in ex vivo porcine coronary artery, the recognition rate of plaque by EMDI is 2.99 to 4.65 times higher than those by DI and DOPU evaluated by spatial response of the Laplacian operator (SRLO).</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 4","pages":"293–303"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.3c00119","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.3c00119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Medium depolarization imaging by catheter-based polarization-sensitive optical coherence tomography (PS-OCT) can provide valuable insight into significant features of lipid, macrophages, and cholesterol crystals in atherosclerotic vulnerable plaques. In this paper, we demonstrate a method to achieve an accurate estimation of the medium depolarization index (EMDI) with noise immunity in catheter-based PS-OCT. EMDI is calculated by an iterative approximation based on Lu–Chipman matrix decomposition and Frobenius norm judgment of incoherent averaging of Mueller matrices. Monte Carlo simulation results verify that the medium depolarization measurement by EMDI is 3.3 times more accurate compared with those of the depolarization index (DI) and degree of polarization uniformity (DOPU). In experiments, we design a microsphere suspension with various concentrations and measure EMDI under different additive noise. Consistently, the measurement accuracy by EMDI is increased 2.85 times compared to those by DI and DOPU. For vascular plaques detection, we use protein and cholesterol gel as plaque phantoms. Based on PS-OCT images of plaque phantom in vitro and in ex vivo porcine coronary artery, the recognition rate of plaque by EMDI is 2.99 to 4.65 times higher than those by DI and DOPU evaluated by spatial response of the Laplacian operator (SRLO).
期刊介绍:
Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging