The impact of a singular first-order term in some degenerate elliptic equations involving Hardy potential

IF 0.8 Q2 MATHEMATICS
Hocine Ayadi, Rezak Souilah
{"title":"The impact of a singular first-order term in some degenerate elliptic equations involving Hardy potential","authors":"Hocine Ayadi,&nbsp;Rezak Souilah","doi":"10.1007/s43036-024-00324-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the regularizing effects of a singular first-order term in some degenerate elliptic equations with zero-order term involving Hardy potential. The model problem is </p><div><div><span>$$\\begin{aligned}\\begin{aligned} \\left\\{ \\begin{array}{ll} -\\textrm{div}\\left( \\frac{\\vert \\nabla u\\vert ^{p-2}\\nabla u}{(1+|u|)^{\\gamma }}\\right) +\\frac{\\vert \\nabla u\\vert ^{p}}{u^{\\theta }}=\\frac{u^{r}}{\\vert x\\vert ^{p}}+f &amp;{}\\text{ in }\\ \\Omega , \\\\ u&gt;0&amp;{} \\text{ in }\\ \\Omega , \\\\ u=0&amp;{} \\text{ on }\\ \\partial \\Omega , \\end{array}\\right. \\end{aligned}\\end{aligned}$$</span></div></div><p>where <span>\\(\\Omega \\)</span> is a bounded open subset in <span>\\({\\mathbb {R}}^{N}\\)</span> with <span>\\(0\\in \\Omega \\)</span>, <span>\\(\\gamma \\ge 0\\)</span>, <span>\\(1&lt;p&lt;N\\)</span>, <span>\\(0&lt;\\theta &lt;1\\)</span>, and <span>\\(0&lt;r&lt;p-\\theta \\)</span>. We prove existence and regularity results for solutions under various hypotheses on the datum <i>f</i>.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00324-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the regularizing effects of a singular first-order term in some degenerate elliptic equations with zero-order term involving Hardy potential. The model problem is

$$\begin{aligned}\begin{aligned} \left\{ \begin{array}{ll} -\textrm{div}\left( \frac{\vert \nabla u\vert ^{p-2}\nabla u}{(1+|u|)^{\gamma }}\right) +\frac{\vert \nabla u\vert ^{p}}{u^{\theta }}=\frac{u^{r}}{\vert x\vert ^{p}}+f &{}\text{ in }\ \Omega , \\ u>0&{} \text{ in }\ \Omega , \\ u=0&{} \text{ on }\ \partial \Omega , \end{array}\right. \end{aligned}\end{aligned}$$

where \(\Omega \) is a bounded open subset in \({\mathbb {R}}^{N}\) with \(0\in \Omega \), \(\gamma \ge 0\), \(1<p<N\), \(0<\theta <1\), and \(0<r<p-\theta \). We prove existence and regularity results for solutions under various hypotheses on the datum f.

涉及哈代势能的某些退化椭圆方程中奇异一阶项的影响
本文研究了一些带零阶项的退化椭圆方程中涉及哈代势的奇异一阶项的正则化效应。模型问题为$$\begin{aligned}\begin{aligned}。\left\{ } -textrm{div}\left( (\frac{vert \nabla u\vert ^{p-2}}\nabla u}{(1+|u|)^{\gamma }}\right) +\frac{vert \nabla u\vert ^{p}}{u^{\theta }}=\frac{u^{r}}\{vert x\vert ^{p}}+f &;{}text{ in }\Omega ,\ u>0&{}\text{ in }\Omega , (u=0&{})\text{ on }\partial\Omega , (end{array}/right.\end{aligned}\end{aligned}$where \(\Omega \) is a bounded open subset in \({\mathbb {R}}^{N}\) with \(0\in \Omega \), \(\gamma \ge 0\),\(1<;p<N\),\(0<\theta <1\), and\(0<r<p-\theta\).我们证明了在基准 f 的各种假设条件下解的存在性和正则性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信