Mohammed AbuAlia, S. Fullam, Filippo Cinotti, Noora Manninen, Markus A. Wimmer
{"title":"Titanium Nitride Coatings on CoCrMo and Ti6Al4V Alloys: Effects on Wear and Ion Release","authors":"Mohammed AbuAlia, S. Fullam, Filippo Cinotti, Noora Manninen, Markus A. Wimmer","doi":"10.3390/lubricants12030096","DOIUrl":null,"url":null,"abstract":"While titanium nitride (TiN) coatings are well known for their biocompatibility and excellent mechanical properties, their wear particle and debris release in orthopedic implants remains a matter of active investigation. This study addresses the efficacy of TiN coatings on CoCrMo and Ti6Al4V alloys to enhance wear resistance and reduce ion release from prosthetic implants. Three different coating variants were utilized: one variant deposited using arc evaporation (Arc) followed by post-treatment, and two variants deposited using high-power impulse magnetron sputtering (HiPIMS) with or without post-treatment. The coatings’ performance was assessed through standard wear testing against ultra-high-molecular-weight polyethylene (UHMWPE) in bovine serum lubricant, and in the presence of abrasive PMMA bone cement particles in the lubricant. The results indicated that Arc and HiPIMS with post-treatment significantly reduced wear and eliminated detectable metal ion release, suggesting that these coatings could extend implant longevity and minimize adverse biological responses. Further long-term simulator and in vivo studies are recommended to validate these promising findings.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants12030096","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
While titanium nitride (TiN) coatings are well known for their biocompatibility and excellent mechanical properties, their wear particle and debris release in orthopedic implants remains a matter of active investigation. This study addresses the efficacy of TiN coatings on CoCrMo and Ti6Al4V alloys to enhance wear resistance and reduce ion release from prosthetic implants. Three different coating variants were utilized: one variant deposited using arc evaporation (Arc) followed by post-treatment, and two variants deposited using high-power impulse magnetron sputtering (HiPIMS) with or without post-treatment. The coatings’ performance was assessed through standard wear testing against ultra-high-molecular-weight polyethylene (UHMWPE) in bovine serum lubricant, and in the presence of abrasive PMMA bone cement particles in the lubricant. The results indicated that Arc and HiPIMS with post-treatment significantly reduced wear and eliminated detectable metal ion release, suggesting that these coatings could extend implant longevity and minimize adverse biological responses. Further long-term simulator and in vivo studies are recommended to validate these promising findings.
期刊介绍:
This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding