Erosive Wear of Structured Carbon-Fibre-Reinforced Textile Polymer Composites under Sands Blasting

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Tong Deng, Vivek Garg, Michael S.A. Bradley
{"title":"Erosive Wear of Structured Carbon-Fibre-Reinforced Textile Polymer Composites under Sands Blasting","authors":"Tong Deng, Vivek Garg, Michael S.A. Bradley","doi":"10.3390/lubricants12030094","DOIUrl":null,"url":null,"abstract":"Textile polymer composite is made of structured fibre matrix using textile technologies in fabrication, and gains benefits from strong mechanical properties with extra light weight. However, erosion behaviours and associated wear mechanisms of the composites may be influenced by the fibre structures due to heterogeneous composition and complex architectural topologies. Understanding the erosive mechanisms of the structured composites can be important, not only for preventing surface damage and loss of mechanical strength but also for improving design and fabrication of the composites. This paper presents an experimental study of erosive wear under sand blasting on 3D woven carbon-fibre-reinforced textile composites with epoxy. The architectural topology methods of the composites include non-crimped bidirectional, tufted bidirectional, 3D layer-to-layer and 3D orthogonal textile methods. The erosion tests were conducted on four impact angles (20°, 30°, 45° and 90°) under one impact velocity at 40 m/s. The study results show that the erosive mechanism of the textile composites is different from that of the neat substrate material. The observations from this study also reveal the different erosive behaviours between the composites with different fibre structures. It concludes that architectural structures can influence the erosion of a textile composite but will not result in significant differences in the wear resistance of the composites (<20%).","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants12030094","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Textile polymer composite is made of structured fibre matrix using textile technologies in fabrication, and gains benefits from strong mechanical properties with extra light weight. However, erosion behaviours and associated wear mechanisms of the composites may be influenced by the fibre structures due to heterogeneous composition and complex architectural topologies. Understanding the erosive mechanisms of the structured composites can be important, not only for preventing surface damage and loss of mechanical strength but also for improving design and fabrication of the composites. This paper presents an experimental study of erosive wear under sand blasting on 3D woven carbon-fibre-reinforced textile composites with epoxy. The architectural topology methods of the composites include non-crimped bidirectional, tufted bidirectional, 3D layer-to-layer and 3D orthogonal textile methods. The erosion tests were conducted on four impact angles (20°, 30°, 45° and 90°) under one impact velocity at 40 m/s. The study results show that the erosive mechanism of the textile composites is different from that of the neat substrate material. The observations from this study also reveal the different erosive behaviours between the composites with different fibre structures. It concludes that architectural structures can influence the erosion of a textile composite but will not result in significant differences in the wear resistance of the composites (<20%).
结构化碳纤维增强纺织聚合物复合材料在喷砂过程中的侵蚀磨损
纺织聚合物复合材料是利用纺织技术制造的结构化纤维基体,具有机械性能强、重量轻的优点。然而,由于异质成分和复杂的结构拓扑,复合材料的侵蚀行为和相关磨损机制可能会受到纤维结构的影响。了解结构复合材料的侵蚀机理非常重要,不仅可以防止表面损伤和机械强度损失,还可以改进复合材料的设计和制造。本文介绍了对环氧树脂三维碳纤维增强纺织复合材料喷砂磨损的实验研究。复合材料的结构拓扑方法包括非卷曲双向法、簇绒双向法、三维层间法和三维正交纺织法。在 40 米/秒的冲击速度下,对四个冲击角度(20°、30°、45°和 90°)进行了侵蚀试验。研究结果表明,纺织复合材料的侵蚀机理不同于纯基底材料。这项研究的观察结果还显示,不同纤维结构的复合材料具有不同的侵蚀行为。研究得出结论,建筑结构会影响纺织复合材料的侵蚀,但不会导致复合材料耐磨性的显著差异(<20%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信