{"title":"Development of direct C-3 difluoromethylation reaction for application in synthesis of quinoline-related drugs","authors":"Thanh Tung Truong, John Nielsen","doi":"10.31276/vjste.66(1).53-58","DOIUrl":null,"url":null,"abstract":"Fluorine holds a prominent position within the realm of drug discovery and development, substantiated by its presence in approximately 25% of drugs approved by the US Food and Drug Administration (FDA). Consequently, the advancement of new fluorination reactions stands as a pivotal area in medicinal chemistry. In particular, the monofluoro-, difluoromethyl-, and trifluoromethyl- are three groups that appear most frequently in drug structure. Quinoline, owing to its privileged structural status, plays a crucial role in drug design and synthesis. Various approaches have been documented for the direct difluoromethylation of the C-2 and C-4 positions of the quinoline ring. However, achieving direct C-3 difluoromethylation has remained an elusive objective. In this study, we introduce a novel method for effecting the direct difluoromethylation at the C-3 position of the quinoline ring.Comprehensive characterizations, including 1H-NMR, 13C-NMR, and 19F-NMR for all compounds are performed. We believe that this novel method will open a new way to access the hitherto untapped C-3-difluoromethylation active compounds.","PeriodicalId":18650,"journal":{"name":"Ministry of Science and Technology, Vietnam","volume":"85 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ministry of Science and Technology, Vietnam","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31276/vjste.66(1).53-58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorine holds a prominent position within the realm of drug discovery and development, substantiated by its presence in approximately 25% of drugs approved by the US Food and Drug Administration (FDA). Consequently, the advancement of new fluorination reactions stands as a pivotal area in medicinal chemistry. In particular, the monofluoro-, difluoromethyl-, and trifluoromethyl- are three groups that appear most frequently in drug structure. Quinoline, owing to its privileged structural status, plays a crucial role in drug design and synthesis. Various approaches have been documented for the direct difluoromethylation of the C-2 and C-4 positions of the quinoline ring. However, achieving direct C-3 difluoromethylation has remained an elusive objective. In this study, we introduce a novel method for effecting the direct difluoromethylation at the C-3 position of the quinoline ring.Comprehensive characterizations, including 1H-NMR, 13C-NMR, and 19F-NMR for all compounds are performed. We believe that this novel method will open a new way to access the hitherto untapped C-3-difluoromethylation active compounds.