Kunlathida Luangpraditkun, Preeyanuch Pimjuk, Preeyawass Phimnuan, Wisanee Wisanwattana, Chothip Wisespongpand, N. Waranuch, J. Viyoch
{"title":"Anti-Aging Properties of Cannabis sativa Leaf Extract against UVA Irradiation","authors":"Kunlathida Luangpraditkun, Preeyanuch Pimjuk, Preeyawass Phimnuan, Wisanee Wisanwattana, Chothip Wisespongpand, N. Waranuch, J. Viyoch","doi":"10.3390/cosmetics11020045","DOIUrl":null,"url":null,"abstract":"Hemp extract has garnered interest as a potential cosmeceutical agent with multifunctional activities, particularly in protecting against UV-induced skin cell aberrations and restoring aged skin cells. The ethanolic extract of Cannabis sativa leaves was prepared into an aqueous solution (CLES) to investigate its anti-photoaging ability. HPLC analysis revealed that the CLES contained 1.64 ± 0.01% w/w of cannabidiol and 0.11% w/w of ∆9-tetrahydrocannabinol. Additionally, the total phenolic content was found to be 4.08 ± 0.30 mg gallic acid equivalent per g of solution using the Folin–Ciocalteu method. The CLES exhibited potent scavenging activity using a DPPH assay, with an EC50 value of 277.9 ± 2.41 μg/mL, comparable to L-ascorbic acid, with 2.19 ± 0.28 μg/mL. The anti-photoaging potential of the CLES was evaluated using UVA-irradiated and in vitro-aged fibroblasts as a model. Pre-treatment with 20 μg/mL CLES for 24 h significantly alleviated the reduction in type I procollagen and suppressed the overproduction of MMP-1 and IL-6 induced by UVA. Moreover, the percentage of senescence-associated β-galactosidase-expressing cells decreased significantly to 11.9 ± 0.5% in the aged cells treated with CLES compared with untreated cells (18.8 ± 3.8%). These results strongly indicate the cosmeceutical potential of the CLES as an effective active agent for the anti-photoaging prevention and/or treatment.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"31 4","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cosmetics11020045","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Hemp extract has garnered interest as a potential cosmeceutical agent with multifunctional activities, particularly in protecting against UV-induced skin cell aberrations and restoring aged skin cells. The ethanolic extract of Cannabis sativa leaves was prepared into an aqueous solution (CLES) to investigate its anti-photoaging ability. HPLC analysis revealed that the CLES contained 1.64 ± 0.01% w/w of cannabidiol and 0.11% w/w of ∆9-tetrahydrocannabinol. Additionally, the total phenolic content was found to be 4.08 ± 0.30 mg gallic acid equivalent per g of solution using the Folin–Ciocalteu method. The CLES exhibited potent scavenging activity using a DPPH assay, with an EC50 value of 277.9 ± 2.41 μg/mL, comparable to L-ascorbic acid, with 2.19 ± 0.28 μg/mL. The anti-photoaging potential of the CLES was evaluated using UVA-irradiated and in vitro-aged fibroblasts as a model. Pre-treatment with 20 μg/mL CLES for 24 h significantly alleviated the reduction in type I procollagen and suppressed the overproduction of MMP-1 and IL-6 induced by UVA. Moreover, the percentage of senescence-associated β-galactosidase-expressing cells decreased significantly to 11.9 ± 0.5% in the aged cells treated with CLES compared with untreated cells (18.8 ± 3.8%). These results strongly indicate the cosmeceutical potential of the CLES as an effective active agent for the anti-photoaging prevention and/or treatment.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico