Green synthesis of silver and iron nano composites using aqueous extract of zanthoxylum armatum seeds and their application for removal of acid black 234 dye
IF 4.3 3区 材料科学Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"Green synthesis of silver and iron nano composites using aqueous extract of zanthoxylum armatum seeds and their application for removal of acid black 234 dye","authors":"Nadia Bashir, Saba Gulzar, Salma Shad","doi":"10.3389/ftox.2024.1288783","DOIUrl":null,"url":null,"abstract":"Green nanotechnology has gained attraction in recent years due to the growing awareness of the environmental and health risks associated with traditional methods of nanomaterial synthesis. In the present study, nanocomposite (NCs) of silver and Iron were prepared using Zanthoxylum Armatum seeds aqueous extract which acts as a reducing, stabilizing, and capping agent. The synthesized NCs were characterized using UV/Vis Spectroscopy, powder X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and EDX. The UV/Vis spectroscopy analysis of the NCs revealed the presence of a surface plasmonic resonance band occurring at 420 nm. Examination of the NCs through SEM demonstrated that they exhibited a nearly spherical morphology, with an average particle diameter measuring 54.8 nm. The crystalline nature of these NCs was verified through X-ray diffraction (XRD), and the calculation of crystallite size using the Scherrer-Debye equation yielded a value of 12.6 nm. The adsorption ability of newly synthesized nanocomposites was investigated against Acid Black 234 Dye. The results showed that a 0.5 g of NCs dose at pH 4 removed 99.3% of 10 mg/L of Acid Black 234 Dye within 60 min. Based on the findings of this research, it can be inferred that the that Ag-Fe NCs synthesized from Zanthoxylum Armatum seeds aqueous extract hold significant potential for addressing environmental pollution caused by Acid Black 234 Dye. The NCs were used as adsorbent for the removal of Acid Black 234 dye from the wastewater sample and showed 98% removal of dye from the commercial sample within 60 min. In this context, the research highlights that the environmentally friendly synthesis of Ag-Fe nanocrystals (Ag-Fe NCs) using Zanthoxylum Armatum as a mediator offers an efficient and cost-effective solution for mitigating environmental pollution.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"65 4","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/ftox.2024.1288783","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Green nanotechnology has gained attraction in recent years due to the growing awareness of the environmental and health risks associated with traditional methods of nanomaterial synthesis. In the present study, nanocomposite (NCs) of silver and Iron were prepared using Zanthoxylum Armatum seeds aqueous extract which acts as a reducing, stabilizing, and capping agent. The synthesized NCs were characterized using UV/Vis Spectroscopy, powder X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and EDX. The UV/Vis spectroscopy analysis of the NCs revealed the presence of a surface plasmonic resonance band occurring at 420 nm. Examination of the NCs through SEM demonstrated that they exhibited a nearly spherical morphology, with an average particle diameter measuring 54.8 nm. The crystalline nature of these NCs was verified through X-ray diffraction (XRD), and the calculation of crystallite size using the Scherrer-Debye equation yielded a value of 12.6 nm. The adsorption ability of newly synthesized nanocomposites was investigated against Acid Black 234 Dye. The results showed that a 0.5 g of NCs dose at pH 4 removed 99.3% of 10 mg/L of Acid Black 234 Dye within 60 min. Based on the findings of this research, it can be inferred that the that Ag-Fe NCs synthesized from Zanthoxylum Armatum seeds aqueous extract hold significant potential for addressing environmental pollution caused by Acid Black 234 Dye. The NCs were used as adsorbent for the removal of Acid Black 234 dye from the wastewater sample and showed 98% removal of dye from the commercial sample within 60 min. In this context, the research highlights that the environmentally friendly synthesis of Ag-Fe nanocrystals (Ag-Fe NCs) using Zanthoxylum Armatum as a mediator offers an efficient and cost-effective solution for mitigating environmental pollution.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico