{"title":"MXene (Ti C Tx) based nanosheet photocatalysts for water remediation: challenges and recent developments","authors":"Hadeel Abbas, Khalid Abbas, A. Al-Ghaban","doi":"10.30684/etj.2024.146505.1683","DOIUrl":null,"url":null,"abstract":"sensors for identifying pollution. MXene has strong surface functional groups, an ion exchange property, and an extremely hydrophilic surface. The most recent developments in MXene preparation and characterization for (Ti C Tx) based nano photocatalysts for water remediation and applications are summarized in this review. Additionally, there are difficulties associated with the synthesis and application of MXene for examining and discussing pollution decontamination. This emerging field focuses on utilizing MXene materials to address water pollution issues through photocatalytic processes. Challenges in designing effective MXene-based photocatalysts are explored, including issues related to charge carrier separation, electron transfer dynamics, and optimizing catalytic efficiency. Recent developments and innovative strategies for overcoming these challenges are discussed, highlighting advancements in enhancing photocatalytic performance and improving water remediation capabilities. The synopsis aims to provide a concise overview of the current state of MXene-based nano photocatalysts for water treatment, offering insights into both hurdles and promising breakthroughs in this critical area of environmental research.","PeriodicalId":507832,"journal":{"name":"Engineering and Technology Journal","volume":"88 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering and Technology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30684/etj.2024.146505.1683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
sensors for identifying pollution. MXene has strong surface functional groups, an ion exchange property, and an extremely hydrophilic surface. The most recent developments in MXene preparation and characterization for (Ti C Tx) based nano photocatalysts for water remediation and applications are summarized in this review. Additionally, there are difficulties associated with the synthesis and application of MXene for examining and discussing pollution decontamination. This emerging field focuses on utilizing MXene materials to address water pollution issues through photocatalytic processes. Challenges in designing effective MXene-based photocatalysts are explored, including issues related to charge carrier separation, electron transfer dynamics, and optimizing catalytic efficiency. Recent developments and innovative strategies for overcoming these challenges are discussed, highlighting advancements in enhancing photocatalytic performance and improving water remediation capabilities. The synopsis aims to provide a concise overview of the current state of MXene-based nano photocatalysts for water treatment, offering insights into both hurdles and promising breakthroughs in this critical area of environmental research.