Mitigation of limitation imposed on hosting capacity in low voltage networks by their distribution transformer loading and degradation considerations

IF 1.6 Q4 ENERGY & FUELS
Agaba Ame‐Oko, Olga Lavrova
{"title":"Mitigation of limitation imposed on hosting capacity in low voltage networks by their distribution transformer loading and degradation considerations","authors":"Agaba Ame‐Oko, Olga Lavrova","doi":"10.1049/esi2.12143","DOIUrl":null,"url":null,"abstract":"A distribution transformer's thermal operating conditions can impose a limitation on the Hosting Capacity (HC) of an electrical distribution feeder for PV interconnections in the feeder's low‐voltage network. This is undesirable as it curtails PV interconnection of both residential and commercial customers in the secondary networks at a time when there are record numbers of interconnection requests by utilities' customers. The authors analyse the limitations on HC due to transformer loading and degradation considerations. Then, the paper proposes a battery energy storage system (BESS) dispatch strategy that will mitigate the limitation on distribution feeder HC by distribution transformers. Three scenarios of HC were simulated for a test network—HC evaluation without restrictions by the distribution transformer (scenario 1), HC evaluation with restrictions by the distribution transformer (scenario 2), and HC evaluation without restriction by the distribution transformer, and with the implementation of the proposed BESS mitigation strategy (scenario 3). Simulation results show that transformer lifetime is depleted to about 6% of expected lifetime for unrestricted HC in scenario 1. Curtailing the HC by 32% in scenario 2 improves the lifetime to 149% of expected lifetime. Implementing the proposed BESS in scenario 3 improves the transformer lifetime to 127% and increases the HC by 62% above the curtailed value in scenario 2, and by 10% above the original HC in scenario 1. The BESS strategy implementation produced cost savings of 49% and 27% of the transformer cost in scenarios 2 and 3, respectively, due to deferred transformer replacement. Conversely, there is a 1600% replacement cost incurred in scenario 1, which underscores the need for a mitigation strategy. The proposed BESS strategy does not only improve the HC of a distribution feeder but also increases a distribution transformer's lifetime leading to replacement cost savings.","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Energy Systems Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/esi2.12143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

A distribution transformer's thermal operating conditions can impose a limitation on the Hosting Capacity (HC) of an electrical distribution feeder for PV interconnections in the feeder's low‐voltage network. This is undesirable as it curtails PV interconnection of both residential and commercial customers in the secondary networks at a time when there are record numbers of interconnection requests by utilities' customers. The authors analyse the limitations on HC due to transformer loading and degradation considerations. Then, the paper proposes a battery energy storage system (BESS) dispatch strategy that will mitigate the limitation on distribution feeder HC by distribution transformers. Three scenarios of HC were simulated for a test network—HC evaluation without restrictions by the distribution transformer (scenario 1), HC evaluation with restrictions by the distribution transformer (scenario 2), and HC evaluation without restriction by the distribution transformer, and with the implementation of the proposed BESS mitigation strategy (scenario 3). Simulation results show that transformer lifetime is depleted to about 6% of expected lifetime for unrestricted HC in scenario 1. Curtailing the HC by 32% in scenario 2 improves the lifetime to 149% of expected lifetime. Implementing the proposed BESS in scenario 3 improves the transformer lifetime to 127% and increases the HC by 62% above the curtailed value in scenario 2, and by 10% above the original HC in scenario 1. The BESS strategy implementation produced cost savings of 49% and 27% of the transformer cost in scenarios 2 and 3, respectively, due to deferred transformer replacement. Conversely, there is a 1600% replacement cost incurred in scenario 1, which underscores the need for a mitigation strategy. The proposed BESS strategy does not only improve the HC of a distribution feeder but also increases a distribution transformer's lifetime leading to replacement cost savings.
减少配电变压器负载和降级因素对低压电网承载能力的限制
配电变压器的热运行条件可能会限制配电馈线的寄存容量 (HC),从而影响馈线低压网络中的光伏互联。这是不可取的,因为在公用事业公司客户的互联请求数量创下新高的时候,它却限制了住宅和商业客户在二次网络中的光伏互联。作者分析了变压器负载和降解因素对 HC 的限制。然后,论文提出了一种电池储能系统 (BESS) 调度策略,该策略将减轻配电变压器对配电馈线 HC 的限制。本文模拟了测试网络的三种 HC 情景:不受配电变压器限制的 HC 评估(情景 1)、受配电变压器限制的 HC 评估(情景 2)、不受配电变压器限制的 HC 评估以及实施所建议的 BESS 缓解策略后的 HC 评估(情景 3)。仿真结果表明,在方案 1 中,如果不限制 HC,变压器寿命将缩短至预期寿命的 6%左右。在方案 2 中,减少 32% 的碳氢化合物可将寿命提高到预期寿命的 149%。在方案 3 中实施拟议的 BESS,可将变压器寿命延长至 127%,并使 HC 比方案 2 中的削减值增加 62%,比方案 1 中的原始 HC 增加 10%。在方案 2 和方案 3 中,由于推迟了变压器的更换,BESS 战略的实施分别节省了 49% 和 27% 的变压器成本。相反,在方案 1 中,更换变压器的成本增加了 1600%,这说明需要采取缓解战略。拟议的 BESS 战略不仅能提高配电馈线的 HC 值,还能延长配电变压器的使用寿命,从而节省更换成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Energy Systems Integration
IET Energy Systems Integration Engineering-Engineering (miscellaneous)
CiteScore
5.90
自引率
8.30%
发文量
29
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信