A new approach of multi-dimensional correlation as a separability measure of multiple outliers in GNSS applications

IF 1.2 Q4 REMOTE SENSING
A. Almagbile
{"title":"A new approach of multi-dimensional correlation as a separability measure of multiple outliers in GNSS applications","authors":"A. Almagbile","doi":"10.1515/jag-2023-0106","DOIUrl":null,"url":null,"abstract":"\n <jats:p>Detecting and identifying outliers/failures in GNSS measurements has garnered significant attention among researchers aiming to enhance the quality of GNSS positioning and navigation. This study delves into the analysis of the separability of multiple outliers when single, double, and triple outliers occur in single-point positioning (SPP) measurements. To achieve this, a novel method includes introducing a multi-dimensional correlation coefficient among test statistics. This coefficient functions as a measure of outliers separability and, in turn, assesses the possible impact of outliers on other measurements. This multi-dimensional correlation approach is based on a nested correlation (<jats:inline-formula id=\"j_jag-2023-0106_ineq_001\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\">\n <m:msubsup>\n <m:mrow>\n <m:mi>ρ</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mtext>nested</m:mtext>\n </m:mrow>\n <m:mrow>\n <m:mi>θ</m:mi>\n <m:mo>,</m:mo>\n <m:mi>φ</m:mi>\n </m:mrow>\n </m:msubsup>\n </m:math>\n <jats:tex-math>${\\rho }_{\\text{nested}}^{\\theta ,\\varphi }$</jats:tex-math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jag-2023-0106_ineq_001.png\" />\n </jats:alternatives>\n </jats:inline-formula>) that explains the variations in test statistic values with and without common measurements in two pairs/combinations. The performance of the <jats:inline-formula id=\"j_jag-2023-0106_ineq_002\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\">\n <m:msubsup>\n <m:mrow>\n <m:mi>ρ</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mtext>nested</m:mtext>\n </m:mrow>\n <m:mrow>\n <m:mi>θ</m:mi>\n <m:mo>,</m:mo>\n <m:mi>φ</m:mi>\n </m:mrow>\n </m:msubsup>\n </m:math>\n <jats:tex-math>${\\rho }_{\\text{nested}}^{\\theta ,\\varphi }$</jats:tex-math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jag-2023-0106_ineq_002.png\" />\n </jats:alternatives>\n </jats:inline-formula> is then compared with other two existing methods of multi-dimensional correlation namely the maximum (<jats:inline-formula id=\"j_jag-2023-0106_ineq_003\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\">\n <m:msubsup>\n <m:mrow>\n <m:mi>ρ</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>max</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>θ</m:mi>\n <m:mo>,</m:mo>\n <m:mi>φ</m:mi>\n </m:mrow>\n </m:msubsup>\n </m:math>\n <jats:tex-math>${\\rho }_{\\mathrm{max}}^{\\theta ,\\varphi }$</jats:tex-math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jag-2023-0106_ineq_003.png\" />\n </jats:alternatives>\n </jats:inline-formula>) and global (<jats:inline-formula id=\"j_jag-2023-0106_ineq_004\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\">\n <m:msubsup>\n <m:mrow>\n <m:mi>ρ</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mtext>Global</m:mtext>\n </m:mrow>\n <m:mrow>\n <m:mi>θ</m:mi>\n <m:mo>,</m:mo>\n <m:mi>φ</m:mi>\n </m:mrow>\n </m:msubsup>\n </m:math>\n <jats:tex-math>${\\rho }_{\\text{Global}}^{\\theta ,\\varphi }$</jats:tex-math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jag-2023-0106_ineq_004.png\" />\n </jats:alternatives>\n </jats:inline-formula>) correlation. The results show that under the presence of two outliers and with and without common measurements in two pairs, the <jats:inline-formula id=\"j_jag-2023-0106_ineq_005\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\">\n <m:msubsup>\n <m:mrow>\n <m:mi>ρ</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mtext>nested</m:mtext>\n </m:mrow>\n <m:mrow>\n <m:mi>θ</m:mi>\n </m:mrow>\n </m:msubsup>\n </m:math>\n <jats:tex-math>${\\rho }_{\\text{nested}}^{\\theta }$</jats:tex-math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jag-2023-0106_ineq_005.png\" />\n </jats:alternatives>\n </jats:inline-formula> outperforms the, <jats:inline-formula id=\"j_jag-2023-0106_ineq_006\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\">\n <m:msubsup>\n <m:mrow>\n <m:mi>ρ</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>max</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>θ</m:mi>\n </m:mrow>\n </m:msubsup>\n </m:math>\n <jats:tex-math>${\\rho }_{\\mathrm{max}}^{\\theta }$</jats:tex-math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jag-2023-0106_ineq_006.png\" />\n </jats:alternatives>\n </jats:inline-formula> and <jats:inline-formula id=\"j_jag-2023-0106_ineq_007\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\">\n <m:msubsup>\n <m:mrow>\n <m:mi>ρ</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mtext>Global</m:mtext>\n </m:mrow>\n <m:mrow>\n <m:mi>θ</m:mi>\n </m:mrow>\n </m:msubsup>\n </m:math>\n <jats:tex-math>${\\rho }_{\\text{Global}}^{\\theta }$</jats:tex-math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jag-2023-0106_ineq_007.png\" />\n </jats:alternatives>\n </jats:inline-formula> exhibiting a determination coefficient (<jats:italic>R</jats:italic>\n <jats:sup>2</jats:sup>) value of approximately 0.95 and 0.62 respectively. The results furthermore reveal that for three outliers and with one, two, and noncommon measurements intersecting between two combinations, the values of <jats:italic>R</jats:italic>\n <jats:sup>2</jats:sup> are 0.62, 0.96, and 0.34. respectively. This means that the <jats:inline-formula id=\"j_jag-2023-0106_ineq_008\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\">\n <m:msubsup>\n <m:mrow>\n <m:mi>ρ</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mtext>nested</m:mtext>\n </m:mrow>\n <m:mrow>\n <m:mi>θ</m:mi>\n <m:mo>,</m:mo>\n <m:mi>φ</m:mi>\n </m:mrow>\n </m:msubsup>\n </m:math>\n <jats:tex-math>${\\rho }_{\\text{nested}}^{\\theta ,\\varphi }$</jats:tex-math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.","PeriodicalId":45494,"journal":{"name":"Journal of Applied Geodesy","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jag-2023-0106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting and identifying outliers/failures in GNSS measurements has garnered significant attention among researchers aiming to enhance the quality of GNSS positioning and navigation. This study delves into the analysis of the separability of multiple outliers when single, double, and triple outliers occur in single-point positioning (SPP) measurements. To achieve this, a novel method includes introducing a multi-dimensional correlation coefficient among test statistics. This coefficient functions as a measure of outliers separability and, in turn, assesses the possible impact of outliers on other measurements. This multi-dimensional correlation approach is based on a nested correlation ( ρ nested θ , φ ${\rho }_{\text{nested}}^{\theta ,\varphi }$ ) that explains the variations in test statistic values with and without common measurements in two pairs/combinations. The performance of the ρ nested θ , φ ${\rho }_{\text{nested}}^{\theta ,\varphi }$ is then compared with other two existing methods of multi-dimensional correlation namely the maximum ( ρ max θ , φ ${\rho }_{\mathrm{max}}^{\theta ,\varphi }$ ) and global ( ρ Global θ , φ ${\rho }_{\text{Global}}^{\theta ,\varphi }$ ) correlation. The results show that under the presence of two outliers and with and without common measurements in two pairs, the ρ nested θ ${\rho }_{\text{nested}}^{\theta }$ outperforms the, ρ max θ ${\rho }_{\mathrm{max}}^{\theta }$ and ρ Global θ ${\rho }_{\text{Global}}^{\theta }$ exhibiting a determination coefficient (R 2) value of approximately 0.95 and 0.62 respectively. The results furthermore reveal that for three outliers and with one, two, and noncommon measurements intersecting between two combinations, the values of R 2 are 0.62, 0.96, and 0.34. respectively. This means that the ρ nested θ , φ ${\rho }_{\text{nested}}^{\theta ,\varphi }$
分享
查看原文 本刊更多论文
将多维相关性作为全球导航卫星系统应用中多个离群值可分离度量的新方法
结果表明,在存在两个离群值以及两对组合中存在或不存在共同测量值的情况下,ρ嵌套θ ${rho }_{text{nested}}^{\theta }$的判定系数(R 2)值分别约为 0.95 和 0.62,优于ρ最大θ ${rho }_{mathrm{max}}^{\theta }$和ρ全局θ ${rho }_{text{Global}}^{\theta }$。结果还显示,对于三个离群值以及两个组合之间有一个、两个和非共用测量值相交的情况,R 2 值分别为 0.62、0.96 和 0.34。这意味着ρ嵌套θ , φ ${rho }_\{text{nested}}^{theta ,\varphi }$ <jats:inline-graphic xmlns:xlink="http://www.w3.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Geodesy
Journal of Applied Geodesy REMOTE SENSING-
CiteScore
2.30
自引率
7.10%
发文量
30
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信