ML approaches for OTDR diagnoses in passive optical networks—event detection and classification: ways for ODN branch assignment

IF 4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Michael Straub;Johannes Reber;Tarek Saier;Robert Borkowski;Shi Li;Dmitry Khomchenko;Andre Richter;Michael Farber;Tobias Kafer;Rene Bonk
{"title":"ML approaches for OTDR diagnoses in passive optical networks—event detection and classification: ways for ODN branch assignment","authors":"Michael Straub;Johannes Reber;Tarek Saier;Robert Borkowski;Shi Li;Dmitry Khomchenko;Andre Richter;Michael Farber;Tobias Kafer;Rene Bonk","doi":"10.1364/JOCN.516659","DOIUrl":null,"url":null,"abstract":"An ML-supported diagnostics concept is introduced and demonstrated to detect and classify events on OTDR traces for application on a PON optical distribution network. We can also associate events with ODN branches by using deployment data of the PON. We analyze an ensemble classifier and neural networks, the usage of synthetic OTDR-like traces, and measured data for training. In our proof-of-concept, we show a precision of 98% and recall of 95% using an ensemble classifier on measured OTDR traces and a successful mapping to ODN branches or groups of branches. For emulated data, we achieve an average precision of 70% and an average recall of 91%.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 7","pages":"C43-C50"},"PeriodicalIF":4.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10500013/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

An ML-supported diagnostics concept is introduced and demonstrated to detect and classify events on OTDR traces for application on a PON optical distribution network. We can also associate events with ODN branches by using deployment data of the PON. We analyze an ensemble classifier and neural networks, the usage of synthetic OTDR-like traces, and measured data for training. In our proof-of-concept, we show a precision of 98% and recall of 95% using an ensemble classifier on measured OTDR traces and a successful mapping to ODN branches or groups of branches. For emulated data, we achieve an average precision of 70% and an average recall of 91%.
(ECOC 20 ) 用于无源光网络中 OTDR 诊断的 ML 方法 ̶ 事件检测和分类 ̶ ODN 分支分配的方法
本文介绍并演示了一种由 ML 支持的诊断概念,用于检测 PON 光分配网络中应用的 OTDR 曲线上的事件并对其进行分类。我们还可以利用 PON 的部署数据将事件与 ODN 分支联系起来。我们分析了集合分类器和神经网络、合成 OTDR 类轨迹的使用以及用于训练的测量数据。在我们的概念验证中,我们展示了在测量的 OTDR 曲线上使用集合分类器的 98% 精确度和 95% 召回率,以及与 ODN 分支或分支组的成功映射。对于仿真数据,我们实现了 70% 的平均精确度和 91% 的平均召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.40
自引率
16.00%
发文量
104
审稿时长
4 months
期刊介绍: The scope of the Journal includes advances in the state-of-the-art of optical networking science, technology, and engineering. Both theoretical contributions (including new techniques, concepts, analyses, and economic studies) and practical contributions (including optical networking experiments, prototypes, and new applications) are encouraged. Subareas of interest include the architecture and design of optical networks, optical network survivability and security, software-defined optical networking, elastic optical networks, data and control plane advances, network management related innovation, and optical access networks. Enabling technologies and their applications are suitable topics only if the results are shown to directly impact optical networking beyond simple point-to-point networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信