Matrix recovery from nonconvex regularized least absolute deviations

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jiao Xu, Peng Li, Bing Zheng
{"title":"Matrix recovery from nonconvex regularized least absolute deviations","authors":"Jiao Xu, Peng Li, Bing Zheng","doi":"10.1088/1361-6420/ad35e1","DOIUrl":null,"url":null,"abstract":"\n In this paper, we consider the low-rank matrix recovery problem. We propose the nonconvex regularized least absolute deviations model via $\\ell_1-\\alpha\\ell_2 \\ (0<\\alpha<1)$ minimization. We establish the theoretical analysis of the proposed model and obtain a stable error estimation. Our result is a nontrivial extension of some previous work. Different from most of the state-of-the-art methods, our method does not need any knowledge of standard deviation or any moment assumption of the noise. Numerical experiments show that our method is effective for many types of noise distributions.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad35e1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the low-rank matrix recovery problem. We propose the nonconvex regularized least absolute deviations model via $\ell_1-\alpha\ell_2 \ (0<\alpha<1)$ minimization. We establish the theoretical analysis of the proposed model and obtain a stable error estimation. Our result is a nontrivial extension of some previous work. Different from most of the state-of-the-art methods, our method does not need any knowledge of standard deviation or any moment assumption of the noise. Numerical experiments show that our method is effective for many types of noise distributions.
从非凸正则化最小绝对偏差中恢复矩阵
本文考虑了低阶矩阵恢复问题。我们提出了通过 $\ell_1-\alpha\ell_2 \ (0<\alpha<1)$ 最小化的非凸正则化最小绝对偏差模型。我们建立了所提模型的理论分析,并获得了稳定的误差估计。我们的结果是对之前一些工作的非难扩展。与大多数最先进的方法不同,我们的方法不需要任何标准偏差知识或任何噪声矩假设。数值实验表明,我们的方法对多种类型的噪声分布都很有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信