{"title":"Influence of Local Water Vapor Analysis Uncertainty on Ensemble Forecasts of Tropical Cyclogenesis Using Hurricane Irma (2017) as a Testbed","authors":"Christopher M. Hartman, F. Judt, Xingchao Chen","doi":"10.1175/mwr-d-23-0195.1","DOIUrl":null,"url":null,"abstract":"\nTropical cyclone formation is known to require abundant water vapor in the lower to middle troposphere within the incipient disturbance. In this study, we assess local water vapor analysis uncertainty impacts on the predictability of the formation of Hurricane Irma (2017). To this end, we reduce the magnitude of the incipient disturbance’s water vapor perturbations obtained from an ensemble-based data assimilation system that constrained moisture by assimilating all-sky infrared and microwave radiances. Five-day ensemble forecasts are initialized two days before genesis using each set of modified analysis perturbations. Growth of convective differences and intensity uncertainty are evaluated for\neach ensemble forecast.\nWe observe that when initializing an ensemble forecast with only moisture uncertainty within the incipient disturbance, the resulting intensity uncertainty at every lead time exceeds half that of an ensemble containing initial perturbations to all variables throughout the domain. Although ensembles with different initial moisture uncertainty amplitudes reveal a similar pathway to genesis, uncertainty in genesis timing varies substantially across ensembles since moister members exhibit earlier spin-up of the low-level vortex. These differences in genesis timing are traced back to the first six to twelve hours of integration, when differences in the position and intensity of mesoscale convective systems across ensemble members develop more quickly with greater initial moisture uncertainty. In addition, the rapid growth of intensity uncertainty may be greatly modulated by the diurnal cycle. Ultimately, this study underscores the importance of targeting the incipient disturbance with high spatio-temporal water vapor observations for ingestion into data assimilation systems.","PeriodicalId":18824,"journal":{"name":"Monthly Weather Review","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Weather Review","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/mwr-d-23-0195.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Tropical cyclone formation is known to require abundant water vapor in the lower to middle troposphere within the incipient disturbance. In this study, we assess local water vapor analysis uncertainty impacts on the predictability of the formation of Hurricane Irma (2017). To this end, we reduce the magnitude of the incipient disturbance’s water vapor perturbations obtained from an ensemble-based data assimilation system that constrained moisture by assimilating all-sky infrared and microwave radiances. Five-day ensemble forecasts are initialized two days before genesis using each set of modified analysis perturbations. Growth of convective differences and intensity uncertainty are evaluated for
each ensemble forecast.
We observe that when initializing an ensemble forecast with only moisture uncertainty within the incipient disturbance, the resulting intensity uncertainty at every lead time exceeds half that of an ensemble containing initial perturbations to all variables throughout the domain. Although ensembles with different initial moisture uncertainty amplitudes reveal a similar pathway to genesis, uncertainty in genesis timing varies substantially across ensembles since moister members exhibit earlier spin-up of the low-level vortex. These differences in genesis timing are traced back to the first six to twelve hours of integration, when differences in the position and intensity of mesoscale convective systems across ensemble members develop more quickly with greater initial moisture uncertainty. In addition, the rapid growth of intensity uncertainty may be greatly modulated by the diurnal cycle. Ultimately, this study underscores the importance of targeting the incipient disturbance with high spatio-temporal water vapor observations for ingestion into data assimilation systems.
期刊介绍:
Monthly Weather Review (MWR) (ISSN: 0027-0644; eISSN: 1520-0493) publishes research relevant to the analysis and prediction of observed atmospheric circulations and physics, including technique development, data assimilation, model validation, and relevant case studies. This research includes numerical and data assimilation techniques that apply to the atmosphere and/or ocean environments. MWR also addresses phenomena having seasonal and subseasonal time scales.