A New Iterative Broyden Legendre Wavelet Galerkin FEM Applied to Unsteady State Model of Two-Dimensional Elliptic Fin

S. Upadhyay, Priti Sharma, Surjan Singh, K. N. Rai
{"title":"A New Iterative Broyden Legendre Wavelet Galerkin FEM Applied to Unsteady State Model of Two-Dimensional Elliptic Fin","authors":"S. Upadhyay, Priti Sharma, Surjan Singh, K. N. Rai","doi":"10.1115/1.4065113","DOIUrl":null,"url":null,"abstract":"\n The novelty of this paper is the investigation of numerical study of a mathematical model which deals with time dependent heat flow in elliptic fin ( dry, wet and partially wet). In this paper, we developed a nonlinear model of second-order heat equations in unsteady state condition. A new iterative Broyden Legendre Wavelet Galerkin Finite Element Method is used for the solution. The central difference approximation used for discretization of second order derivatives and then utilization of Hadamard, Khatri Rao and Face splitting matrices product with Legendre Wavelet Galerkin Method transfers our main problem in to system of non-linear algebraic equations. The iterative Broyden Method provides the solution for this system. In a particular case, present solution is compared with the exact solution and is approximately the same. Effect of different parameters such as Biot number, Latent heat, Kirpichev number, Fin thickness, μ, η and ξ on the temperature distribution are discussed in detail.","PeriodicalId":505153,"journal":{"name":"ASME Journal of Heat and Mass Transfer","volume":"7 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Journal of Heat and Mass Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The novelty of this paper is the investigation of numerical study of a mathematical model which deals with time dependent heat flow in elliptic fin ( dry, wet and partially wet). In this paper, we developed a nonlinear model of second-order heat equations in unsteady state condition. A new iterative Broyden Legendre Wavelet Galerkin Finite Element Method is used for the solution. The central difference approximation used for discretization of second order derivatives and then utilization of Hadamard, Khatri Rao and Face splitting matrices product with Legendre Wavelet Galerkin Method transfers our main problem in to system of non-linear algebraic equations. The iterative Broyden Method provides the solution for this system. In a particular case, present solution is compared with the exact solution and is approximately the same. Effect of different parameters such as Biot number, Latent heat, Kirpichev number, Fin thickness, μ, η and ξ on the temperature distribution are discussed in detail.
应用于二维椭圆鳍片非稳态模型的新型迭代布洛伊登-勒让德雷小波 Galerkin 有限元模型
本文的新颖之处在于对一个数学模型的数值研究,该模型处理椭圆翅片(干翅片、湿翅片和部分湿翅片)中随时间变化的热流。在本文中,我们建立了一个非线性二阶热方程的非稳态模型。采用了一种新的迭代布洛伊登-勒让德雷小波 Galerkin 有限元方法进行求解。中心差分近似用于二阶导数的离散化,然后利用 Hadamard、Khatri Rao 和 Face 分裂矩阵与 Legendre 小波 Galerkin 方法的乘积,将我们的主要问题转化为非线性代数方程系统。迭代布洛伊登法提供了该系统的解。在特定情况下,本解与精确解进行了比较,结果大致相同。详细讨论了不同参数(如比奥特数、潜热、基尔比雪夫数、鳍片厚度、μ、η 和 ξ)对温度分布的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信