Liquid-metal transfer from an anode to a cathode without short circuiting

Yahua He, Jing You, Michael D. Dickey, Xiaolin Wang
{"title":"Liquid-metal transfer from an anode to a cathode without short circuiting","authors":"Yahua He, Jing You, Michael D. Dickey, Xiaolin Wang","doi":"10.1038/s44286-024-00045-1","DOIUrl":null,"url":null,"abstract":"Droplets of liquid metals attached to an anode in an electrochemical cell move toward the cathode since electrochemical oxidation lowers the interfacial tension of the metal. When the droplet reaches the cathode, it wraps around the cathode but does not touch it despite the electrostatic attraction between the positively charged liquid metal and the negatively charged cathode. The combination of electrochemical oxidation of the liquid-metal anode and hydrogen production on the cathode prevents contact, thus avoiding a short circuit between the two electrodes. Consequently, the liquid metal continues to flow toward the cathode and surrounds it until finally the metal completely detaches from the anode and transfers to the cathode. Such manipulation depends on the distance between the cathode and the liquid metal; only the closest liquid-metal droplet will detach and transfer. During this process, the liquid can adopt surprising shapes that resemble tentacles. We demonstrate and characterize the unique ability to detach and transfer liquid metal using a low applied voltage. Positively charged anodes should short circuit when they are brought into contact with a cathode. The authors demonstrate that a liquid-metal anode can naturally flow toward the cathode, completely surround it and ultimately transfer to the cathode without short circuiting in an electrochemical cell.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 4","pages":"293-300"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-024-00045-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Droplets of liquid metals attached to an anode in an electrochemical cell move toward the cathode since electrochemical oxidation lowers the interfacial tension of the metal. When the droplet reaches the cathode, it wraps around the cathode but does not touch it despite the electrostatic attraction between the positively charged liquid metal and the negatively charged cathode. The combination of electrochemical oxidation of the liquid-metal anode and hydrogen production on the cathode prevents contact, thus avoiding a short circuit between the two electrodes. Consequently, the liquid metal continues to flow toward the cathode and surrounds it until finally the metal completely detaches from the anode and transfers to the cathode. Such manipulation depends on the distance between the cathode and the liquid metal; only the closest liquid-metal droplet will detach and transfer. During this process, the liquid can adopt surprising shapes that resemble tentacles. We demonstrate and characterize the unique ability to detach and transfer liquid metal using a low applied voltage. Positively charged anodes should short circuit when they are brought into contact with a cathode. The authors demonstrate that a liquid-metal anode can naturally flow toward the cathode, completely surround it and ultimately transfer to the cathode without short circuiting in an electrochemical cell.

Abstract Image

从阳极到阴极的液态金属转移,无需短路
在电化学电池中,附着在阳极上的液态金属液滴会向阴极移动,因为电化学氧化会降低金属的界面张力。当液滴到达阴极时,尽管带正电的液态金属和带负电的阴极之间存在静电吸引力,但液滴还是会缠绕在阴极上,而不会接触到阴极。液态金属阳极的电化学氧化和阴极的氢气产生共同阻止了接触,从而避免了两个电极之间的短路。因此,液态金属继续流向阴极并将其包围,直到最后金属完全脱离阳极并转移到阴极。这种操作取决于阴极和液态金属之间的距离;只有最近的液态金属液滴才会脱离并转移。在此过程中,液体会呈现出类似触手的惊人形状。我们展示并描述了利用低外加电压分离和转移液态金属的独特能力。带正电的阳极在与阴极接触时会短路。作者证明,在电化学电池中,液态金属阳极可以自然流向阴极,完全包围阴极,并最终转移到阴极,而不会短路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信