Research on strategy of load-side resonant soft-switching inverter based on interconnection and damping assignment-passivity based control

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yajing Zhang, Huanchen Zhang, Jianguo Li, Jiuhe Wang
{"title":"Research on strategy of load-side resonant soft-switching inverter based on interconnection and damping assignment-passivity based control","authors":"Yajing Zhang, Huanchen Zhang, Jianguo Li, Jiuhe Wang","doi":"10.24425/aee.2024.148857","DOIUrl":null,"url":null,"abstract":"Soft-switching technologies can effectively solve the problem of switching losses caused by increasing switching frequency of grid-connected inverters. As a branch of soft-switching technologies, load-side resonant soft-switching is a hotspot for applications of high-frequency inverters, because it has the advantage of achieving soft-switching without using additional components. However, the traditional PI control strategy based on the linear model is prone to destabilization and non-robust dynamic performance when large signal perturbation occurs. In this paper, a novel Passivity-Based Control (PBC) method is proposed to improve the dynamic performance of load-side resonant soft-switching grid-connected inverter. Besides, the model based on the Port Controlled Hamiltonian (PCH) model of the soft switching inverter is carried out, and the passivity-based controller is designed based on the established model using the way of interconnection and damping assignmentpassivity based control (IDA-PBC). Both stable performance and dynamic performance of the load-side resonant soft-switching inverter can be improved over the whole operating range. Finally, a 750 W load-side resonant soft-switching inverter simulation model is built and the output performance is compared with the traditional PI control strategy under stable and dynamic conditions. The simulation results show that the proposed control strategy reduces the harmonic distortion rate and improves the quality of the output waveforms.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/aee.2024.148857","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Soft-switching technologies can effectively solve the problem of switching losses caused by increasing switching frequency of grid-connected inverters. As a branch of soft-switching technologies, load-side resonant soft-switching is a hotspot for applications of high-frequency inverters, because it has the advantage of achieving soft-switching without using additional components. However, the traditional PI control strategy based on the linear model is prone to destabilization and non-robust dynamic performance when large signal perturbation occurs. In this paper, a novel Passivity-Based Control (PBC) method is proposed to improve the dynamic performance of load-side resonant soft-switching grid-connected inverter. Besides, the model based on the Port Controlled Hamiltonian (PCH) model of the soft switching inverter is carried out, and the passivity-based controller is designed based on the established model using the way of interconnection and damping assignmentpassivity based control (IDA-PBC). Both stable performance and dynamic performance of the load-side resonant soft-switching inverter can be improved over the whole operating range. Finally, a 750 W load-side resonant soft-switching inverter simulation model is built and the output performance is compared with the traditional PI control strategy under stable and dynamic conditions. The simulation results show that the proposed control strategy reduces the harmonic distortion rate and improves the quality of the output waveforms.
基于互联和阻尼分配-通量控制的负载侧谐振软开关逆变器策略研究
软开关技术可以有效解决并网逆变器因开关频率提高而产生的开关损耗问题。作为软开关技术的一个分支,负载侧谐振软开关具有无需使用额外元件即可实现软开关的优点,是高频逆变器的应用热点。然而,传统的基于线性模型的 PI 控制策略在发生大信号扰动时容易失稳,动态性能不稳定。本文提出了一种新颖的基于被动性的控制(PBC)方法,以改善负载侧谐振软开关并网逆变器的动态性能。此外,本文还建立了基于端口控制哈密顿(PCH)模型的软开关逆变器模型,并采用基于互联和阻尼赋值的旁通性控制(IDA-PBC)方式,在建立的模型基础上设计了基于旁通性的控制器。在整个工作范围内,负载侧谐振软开关逆变器的稳定性能和动态性能都得到了改善。最后,建立了一个 750 W 负载侧谐振软开关逆变器仿真模型,并与传统 PI 控制策略在稳定和动态条件下的输出性能进行了比较。仿真结果表明,所提出的控制策略降低了谐波失真率,提高了输出波形的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信