{"title":"PDMSC: privacy-preserving decentralized multi-skill spatial crowdsourcing","authors":"Zhaobin Meng, Yueheng Lu, Hongyue Duan","doi":"10.1108/ijwis-09-2023-0143","DOIUrl":null,"url":null,"abstract":"Purpose\nThe purpose of this paper is to study the following two issues regarding blockchain crowdsourcing. First, to design smart contracts with lower consumption to meet the needs of blockchain crowdsourcing services and also need to design better interaction modes to further reduce the cost of blockchain crowdsourcing services. Second, to design an effective privacy protection mechanism to protect user privacy while still providing high-quality crowdsourcing services for location-sensitive multiskilled mobile space crowdsourcing scenarios and blockchain exposure issues.\n\nDesign/methodology/approach\nThis paper proposes a blockchain-based privacy-preserving crowdsourcing model for multiskill mobile spaces. The model in this paper uses the zero-knowledge proof method to make the requester believe that the user is within a certain location without the user providing specific location information, thereby protecting the user’s location information and other privacy. In addition, through off-chain calculation and on-chain verification methods, gas consumption is also optimized.\n\nFindings\nThis study deployed the model on Ethereum for testing. This study found that the privacy protection is feasible and the gas optimization is obvious.\n\nOriginality/value\nThis study designed a mobile space crowdsourcing based on a zero-knowledge proof privacy protection mechanism and optimized gas consumption.\n","PeriodicalId":44153,"journal":{"name":"International Journal of Web Information Systems","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijwis-09-2023-0143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The purpose of this paper is to study the following two issues regarding blockchain crowdsourcing. First, to design smart contracts with lower consumption to meet the needs of blockchain crowdsourcing services and also need to design better interaction modes to further reduce the cost of blockchain crowdsourcing services. Second, to design an effective privacy protection mechanism to protect user privacy while still providing high-quality crowdsourcing services for location-sensitive multiskilled mobile space crowdsourcing scenarios and blockchain exposure issues.
Design/methodology/approach
This paper proposes a blockchain-based privacy-preserving crowdsourcing model for multiskill mobile spaces. The model in this paper uses the zero-knowledge proof method to make the requester believe that the user is within a certain location without the user providing specific location information, thereby protecting the user’s location information and other privacy. In addition, through off-chain calculation and on-chain verification methods, gas consumption is also optimized.
Findings
This study deployed the model on Ethereum for testing. This study found that the privacy protection is feasible and the gas optimization is obvious.
Originality/value
This study designed a mobile space crowdsourcing based on a zero-knowledge proof privacy protection mechanism and optimized gas consumption.
期刊介绍:
The Global Information Infrastructure is a daily reality. In spite of the many applications in all domains of our societies: e-business, e-commerce, e-learning, e-science, and e-government, for instance, and in spite of the tremendous advances by engineers and scientists, the seamless development of Web information systems and services remains a major challenge. The journal examines how current shared vision for the future is one of semantically-rich information and service oriented architecture for global information systems. This vision is at the convergence of progress in technologies such as XML, Web services, RDF, OWL, of multimedia, multimodal, and multilingual information retrieval, and of distributed, mobile and ubiquitous computing. Topicality While the International Journal of Web Information Systems covers a broad range of topics, the journal welcomes papers that provide a perspective on all aspects of Web information systems: Web semantics and Web dynamics, Web mining and searching, Web databases and Web data integration, Web-based commerce and e-business, Web collaboration and distributed computing, Internet computing and networks, performance of Web applications, and Web multimedia services and Web-based education.