Weighted Karcher means on unipotent Lie groups

IF 0.8 Q2 MATHEMATICS
Jimmie Lawson
{"title":"Weighted Karcher means on unipotent Lie groups","authors":"Jimmie Lawson","doi":"10.1007/s43036-024-00326-9","DOIUrl":null,"url":null,"abstract":"<div><p>A substantial theory of the Karcher mean exists in the settings of Riemannian manifolds and positive matrix and operator spaces. Here a general setting for the study of the Karcher mean on Lie groups is proposed. Local existence and uniqueness results already exist, but here, a significant global result is obtained. It is shown that a natural computable iteration scheme for the Karcher mean exists for the Lie group of upper triangular unipotent matrices and that it always converges starting from any point after finitely many steps.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00326-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A substantial theory of the Karcher mean exists in the settings of Riemannian manifolds and positive matrix and operator spaces. Here a general setting for the study of the Karcher mean on Lie groups is proposed. Local existence and uniqueness results already exist, but here, a significant global result is obtained. It is shown that a natural computable iteration scheme for the Karcher mean exists for the Lie group of upper triangular unipotent matrices and that it always converges starting from any point after finitely many steps.

单能李群上的加权卡彻手段
在黎曼流形和正矩阵与算子空间中,存在着关于卡氏均值的大量理论。这里提出了研究李群上的卡氏均值的一般背景。局部存在性和唯一性的结果已经存在,但这里获得了一个重要的全局性结果。研究表明,对于上三角单能矩阵的李群,存在一个自然的可计算的卡氏均值迭代方案,它总是在经过有限多步后从任意点开始收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信