{"title":"Numerical Study of the Gas–Solid Separation Performance of Axial Flow Cyclone Separators","authors":"Yanqin Mao, R. Chertovskih, Liang Cai","doi":"10.3390/inventions9020034","DOIUrl":null,"url":null,"abstract":"Cyclone separators, which have a high separation performance, play a crucial role in mitigating the occurrence of dust explosion incidents. This study aims to improve the performance of an axial cyclone separator using the results of simulations employing the RNG k-ε model together with a user-defined function to simulate the wall collision process. The effectiveness of various structural modifications to the vortex tube has been addressed. Specifically, we found that increasing the number of blades, reducing the blade exit angle, and adopting L-shaped blades increase separation efficiency. Additionally, enlarging the guide vane and exhaust pipe diameters, as well as increasing the exhaust pipe inclination angle, contribute to an improved separation performance due to the developed tangential velocity and vortex cores. However, it also increases the pressure drop losses due to the increase in the turbulence pulsation entropy and the wall entropy, while the time-averaged entropy is found to be less significant. As a result, our study sheds light on the flow characteristics, the gas–solid separation process, and the energy loss mechanism in the cyclone separator.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" 43","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/inventions9020034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Cyclone separators, which have a high separation performance, play a crucial role in mitigating the occurrence of dust explosion incidents. This study aims to improve the performance of an axial cyclone separator using the results of simulations employing the RNG k-ε model together with a user-defined function to simulate the wall collision process. The effectiveness of various structural modifications to the vortex tube has been addressed. Specifically, we found that increasing the number of blades, reducing the blade exit angle, and adopting L-shaped blades increase separation efficiency. Additionally, enlarging the guide vane and exhaust pipe diameters, as well as increasing the exhaust pipe inclination angle, contribute to an improved separation performance due to the developed tangential velocity and vortex cores. However, it also increases the pressure drop losses due to the increase in the turbulence pulsation entropy and the wall entropy, while the time-averaged entropy is found to be less significant. As a result, our study sheds light on the flow characteristics, the gas–solid separation process, and the energy loss mechanism in the cyclone separator.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.