{"title":"Relative controllability of linear state-delay fractional systems","authors":"","doi":"10.1007/s13540-024-00270-8","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, our focus is on exploring the relative controllability of systems governed by linear fractional differential equations incorporating state delay. We introduce a novel counterpart to the Cayley-Hamilton theorem. Leveraging a delayed perturbation of the Mittag-Leffler function, along with a determining function and an analog of the Cayley-Hamilton theorem, we establish an algebraic Kalman-type rank criterion for assessing the relative controllability of fractional differential equations with state delay. Moreover, we articulate necessary and sufficient conditions for relative controllability criteria concerning linear fractional time-delay systems, expressed in terms of a new <span> <span>\\(\\alpha \\)</span> </span>-Gramian matrix and define a control which transfer the system from any initial state to any final state within a given time. The theoretical findings are exemplified through the presentation of illustrative examples.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00270-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, our focus is on exploring the relative controllability of systems governed by linear fractional differential equations incorporating state delay. We introduce a novel counterpart to the Cayley-Hamilton theorem. Leveraging a delayed perturbation of the Mittag-Leffler function, along with a determining function and an analog of the Cayley-Hamilton theorem, we establish an algebraic Kalman-type rank criterion for assessing the relative controllability of fractional differential equations with state delay. Moreover, we articulate necessary and sufficient conditions for relative controllability criteria concerning linear fractional time-delay systems, expressed in terms of a new \(\alpha \)-Gramian matrix and define a control which transfer the system from any initial state to any final state within a given time. The theoretical findings are exemplified through the presentation of illustrative examples.