Relative controllability of linear state-delay fractional systems

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
{"title":"Relative controllability of linear state-delay fractional systems","authors":"","doi":"10.1007/s13540-024-00270-8","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, our focus is on exploring the relative controllability of systems governed by linear fractional differential equations incorporating state delay. We introduce a novel counterpart to the Cayley-Hamilton theorem. Leveraging a delayed perturbation of the Mittag-Leffler function, along with a determining function and an analog of the Cayley-Hamilton theorem, we establish an algebraic Kalman-type rank criterion for assessing the relative controllability of fractional differential equations with state delay. Moreover, we articulate necessary and sufficient conditions for relative controllability criteria concerning linear fractional time-delay systems, expressed in terms of a new <span> <span>\\(\\alpha \\)</span> </span>-Gramian matrix and define a control which transfer the system from any initial state to any final state within a given time. The theoretical findings are exemplified through the presentation of illustrative examples.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00270-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, our focus is on exploring the relative controllability of systems governed by linear fractional differential equations incorporating state delay. We introduce a novel counterpart to the Cayley-Hamilton theorem. Leveraging a delayed perturbation of the Mittag-Leffler function, along with a determining function and an analog of the Cayley-Hamilton theorem, we establish an algebraic Kalman-type rank criterion for assessing the relative controllability of fractional differential equations with state delay. Moreover, we articulate necessary and sufficient conditions for relative controllability criteria concerning linear fractional time-delay systems, expressed in terms of a new \(\alpha \) -Gramian matrix and define a control which transfer the system from any initial state to any final state within a given time. The theoretical findings are exemplified through the presentation of illustrative examples.

线性状态延迟分数系统的相对可控性
摘要 本文的重点是探索由包含状态延迟的线性分数微分方程支配的系统的相对可控性。我们引入了一个与 Cayley-Hamilton 定理相对应的新定理。利用 Mittag-Leffler 函数的延迟扰动、确定函数和 Cayley-Hamilton 定理的类似方法,我们建立了一个代数卡尔曼型等级准则,用于评估具有状态延迟的分数微分方程的相对可控性。此外,我们还阐明了线性分数时延系统相对可控性标准的必要条件和充分条件,这些条件用一个新的(\α \)-格拉米矩阵来表示,并定义了一种控制,可在给定时间内将系统从任意初始状态转移到任意最终状态。通过举例说明,对理论发现进行了例证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信