Convolution formulas for multivariate arithmetic Tutte polynomials

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Tianlong Ma, Xian'an Jin, Weiling Yang
{"title":"Convolution formulas for multivariate arithmetic Tutte polynomials","authors":"Tianlong Ma,&nbsp;Xian'an Jin,&nbsp;Weiling Yang","doi":"10.1016/j.aam.2024.102692","DOIUrl":null,"url":null,"abstract":"<div><p>The multivariate arithmetic Tutte polynomial of arithmetic matroids is a generalization of the multivariate Tutte polynomial of matroids. In this note, we give the convolution formulas for the multivariate arithmetic Tutte polynomial of the product of two arithmetic matroids. In particular, the convolution formulas for the multivariate arithmetic Tutte polynomial of an arithmetic matroid are obtained. Applying our results, several known convolution formulas including <span>[5, Theorem 10.9 and Corollary 10.10]</span> and <span>[1, Theorems 1 and 4]</span> are proved by a purely combinatorial proof. The proofs presented here are significantly shorter than the previous ones. In addition, we obtain a convolution formula for the characteristic polynomial of an arithmetic matroid.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019688582400023X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The multivariate arithmetic Tutte polynomial of arithmetic matroids is a generalization of the multivariate Tutte polynomial of matroids. In this note, we give the convolution formulas for the multivariate arithmetic Tutte polynomial of the product of two arithmetic matroids. In particular, the convolution formulas for the multivariate arithmetic Tutte polynomial of an arithmetic matroid are obtained. Applying our results, several known convolution formulas including [5, Theorem 10.9 and Corollary 10.10] and [1, Theorems 1 and 4] are proved by a purely combinatorial proof. The proofs presented here are significantly shorter than the previous ones. In addition, we obtain a convolution formula for the characteristic polynomial of an arithmetic matroid.

多元算术图特多项式的卷积公式
算术矩阵的多元算术图特多项式是矩阵的多元图特多项式的广义化。在本说明中,我们给出了两个算术矩阵乘积的多元算术 Tutte 多项式的卷积公式。特别是,我们得到了算术矩阵的多元算术 Tutte 多项式的卷积公式。应用我们的结果,一些已知的卷积公式,包括[5,定理 10.9 和推论 10.10]和[1,定理 1 和 4],都可以通过纯粹的组合证明得到。这里的证明比之前的证明要短得多。此外,我们还得到了算术矩阵的特征多项式的卷积公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信