Ning Gu , Junwei Yang , Jikang Jian , Huaping Song , Xiaolong Chen
{"title":"Characterization and formation mechanism of short step-bunching defects on 4H-SiC thick homoepitaxial films","authors":"Ning Gu , Junwei Yang , Jikang Jian , Huaping Song , Xiaolong Chen","doi":"10.1016/j.jcrysgro.2024.127677","DOIUrl":null,"url":null,"abstract":"<div><p>Short Step-Bunching (SSB) are a kind of linear defects consisting of convex and concave undulations on the surface of 4H-SiC homoepitaxial layer. In this work, we report the characterizations of SSBs on 12 μm, 50 μm and 85 μm thick SiC epilayers by using optical microscopy (OM), micro-photoluminescence spectra (PL), atomic force microscopy (AFM), chemical mechanical polishing (CMP), molten KOH etching (10 min, 500 ℃) and high resolution transmission electron microscope (HRTEM). It is found that these SSBs are 200 ∼ 250 μm long, perpendicular to the step-flow <span>[11]</span>, <span>[12]</span>, <span>[13]</span>, <span>[14]</span>, <span>[15]</span>, <span>[16]</span>, <span>[17]</span>, <span>[18]</span>, <span>[19]</span>, <span>[20]</span> direction, leading to local rugged surfaces of epilayer. No other poly-types are identified on and around these SSBs. H<sub>2</sub> etching the substrate reveals the existence of short-line defects on the substrate with one or more dislocations (TSD or TED) or an amorphous bump locating in center of most of them. Presumably, the amorphous bump was a kind of carbon inclusion. Based on the above results, we proposed that the SSBs develop from the short-line defects generated when etching the substrates prior to epilayer growth. Elimination of short-line defects by proper etching process is an effective route to reducing the SSBs in 4H-SiC homoepitaxial layers.</p></div>","PeriodicalId":353,"journal":{"name":"Journal of Crystal Growth","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crystal Growth","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002202482400112X","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Short Step-Bunching (SSB) are a kind of linear defects consisting of convex and concave undulations on the surface of 4H-SiC homoepitaxial layer. In this work, we report the characterizations of SSBs on 12 μm, 50 μm and 85 μm thick SiC epilayers by using optical microscopy (OM), micro-photoluminescence spectra (PL), atomic force microscopy (AFM), chemical mechanical polishing (CMP), molten KOH etching (10 min, 500 ℃) and high resolution transmission electron microscope (HRTEM). It is found that these SSBs are 200 ∼ 250 μm long, perpendicular to the step-flow [11], [12], [13], [14], [15], [16], [17], [18], [19], [20] direction, leading to local rugged surfaces of epilayer. No other poly-types are identified on and around these SSBs. H2 etching the substrate reveals the existence of short-line defects on the substrate with one or more dislocations (TSD or TED) or an amorphous bump locating in center of most of them. Presumably, the amorphous bump was a kind of carbon inclusion. Based on the above results, we proposed that the SSBs develop from the short-line defects generated when etching the substrates prior to epilayer growth. Elimination of short-line defects by proper etching process is an effective route to reducing the SSBs in 4H-SiC homoepitaxial layers.
期刊介绍:
The journal offers a common reference and publication source for workers engaged in research on the experimental and theoretical aspects of crystal growth and its applications, e.g. in devices. Experimental and theoretical contributions are published in the following fields: theory of nucleation and growth, molecular kinetics and transport phenomena, crystallization in viscous media such as polymers and glasses; crystal growth of metals, minerals, semiconductors, superconductors, magnetics, inorganic, organic and biological substances in bulk or as thin films; molecular beam epitaxy, chemical vapor deposition, growth of III-V and II-VI and other semiconductors; characterization of single crystals by physical and chemical methods; apparatus, instrumentation and techniques for crystal growth, and purification methods; multilayer heterostructures and their characterisation with an emphasis on crystal growth and epitaxial aspects of electronic materials. A special feature of the journal is the periodic inclusion of proceedings of symposia and conferences on relevant aspects of crystal growth.