Genomic analysis of Cobetia sp. D5 reveals its role in marine sulfur cycling

IF 1.3 4区 生物学 Q4 GENETICS & HEREDITY
Xiao-Mei Geng , Shi-Ning Cai , Hai-Xia Zhu , Zhi-Gang Tang , Chun-Yang Li , Hui-Hui Fu , Yi Zhang , Hai-Yan Cao , Peng Wang , Mei-Ling Sun
{"title":"Genomic analysis of Cobetia sp. D5 reveals its role in marine sulfur cycling","authors":"Xiao-Mei Geng ,&nbsp;Shi-Ning Cai ,&nbsp;Hai-Xia Zhu ,&nbsp;Zhi-Gang Tang ,&nbsp;Chun-Yang Li ,&nbsp;Hui-Hui Fu ,&nbsp;Yi Zhang ,&nbsp;Hai-Yan Cao ,&nbsp;Peng Wang ,&nbsp;Mei-Ling Sun","doi":"10.1016/j.margen.2024.101108","DOIUrl":null,"url":null,"abstract":"<div><p>Dimethylsulfoniopropionate (DMSP) is one of the most abundant sulfur-containing organic compounds on the earth, which is an important carbon and sulfur source and plays an important role in the global sulfur cycle. Marine microorganisms are an important group involved in DMSP metabolism. The strain <em>Cobetia</em> sp. D5 was isolated from seawater samples in the Yellow Sea area of Qingdao during an algal bloom. There is still limited knowledge on the capacity of DMSP utilization of <em>Cobetia</em> bacteria. The study reports the whole genome sequence of <em>Cobetia</em> sp. D5 to understand its DMSP metabolism pathway. The genome of <em>Cobetia</em> sp. D5 consists of a circular chromosome with a length of 4,233,985 bp and the GC content is 62.56%. Genomic analysis showed that <em>Cobetia</em> sp. D5 contains a set of genes to transport and metabolize DMSP, which can cleave DMSP to produce dimethyl sulphide (DMS) and 3-Hydroxypropionyl-Coenzyme A (3-HP-CoA). DMS diffuses into the environment to enter the global sulfur cycle, whereas 3-HP-CoA is catabolized to acetyl CoA to enter central carbon metabolism. Thus, this study provides genetic insights into the DMSP metabolic processes of <em>Cobetia</em> sp. D5 during a marine algal bloom, and contributes to the understanding of the important role played by marine bacteria in the global sulfur cycle.</p></div>","PeriodicalId":18321,"journal":{"name":"Marine genomics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874778724000266","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Dimethylsulfoniopropionate (DMSP) is one of the most abundant sulfur-containing organic compounds on the earth, which is an important carbon and sulfur source and plays an important role in the global sulfur cycle. Marine microorganisms are an important group involved in DMSP metabolism. The strain Cobetia sp. D5 was isolated from seawater samples in the Yellow Sea area of Qingdao during an algal bloom. There is still limited knowledge on the capacity of DMSP utilization of Cobetia bacteria. The study reports the whole genome sequence of Cobetia sp. D5 to understand its DMSP metabolism pathway. The genome of Cobetia sp. D5 consists of a circular chromosome with a length of 4,233,985 bp and the GC content is 62.56%. Genomic analysis showed that Cobetia sp. D5 contains a set of genes to transport and metabolize DMSP, which can cleave DMSP to produce dimethyl sulphide (DMS) and 3-Hydroxypropionyl-Coenzyme A (3-HP-CoA). DMS diffuses into the environment to enter the global sulfur cycle, whereas 3-HP-CoA is catabolized to acetyl CoA to enter central carbon metabolism. Thus, this study provides genetic insights into the DMSP metabolic processes of Cobetia sp. D5 during a marine algal bloom, and contributes to the understanding of the important role played by marine bacteria in the global sulfur cycle.

Cobetia sp. D5 的基因组分析揭示了其在海洋硫循环中的作用
二甲基硫代丙酸盐(DMSP)是地球上最丰富的含硫有机化合物之一,是重要的碳源和硫源,在全球硫循环中发挥着重要作用。海洋微生物是参与 DMSP 代谢的一个重要群体。菌株 Cobetia sp. D5 是在藻类大量繁殖期间从青岛黄海海域的海水样本中分离出来的。目前对 Cobetia 细菌利用 DMSP 能力的了解还很有限。本研究报告了 Cobetia sp. D5 的全基因组序列,以了解其 DMSP 代谢途径。Cobetia sp. D5 的基因组由一条环状染色体组成,长度为 4,233,985 bp,GC 含量为 62.56%。基因组分析表明,Cobetia sp. D5含有一组转运和代谢DMSP的基因,可裂解DMSP产生二甲基硫醚(DMS)和3-羟基丙酰基辅酶A(3-HP-CoA)。DMS 扩散到环境中,进入全球硫循环,而 3-HP-CoA 则被分解为乙酰 CoA,进入中心碳代谢。因此,本研究提供了海洋藻华期间 Cobetia sp. D5 的 DMSP 代谢过程的遗传学见解,有助于了解海洋细菌在全球硫循环中发挥的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine genomics
Marine genomics 生物-遗传学
CiteScore
3.60
自引率
5.30%
发文量
50
审稿时长
29 days
期刊介绍: The journal publishes papers on all functional and evolutionary aspects of genes, chromatin, chromosomes and (meta)genomes of marine (and freshwater) organisms. It deals with new genome-enabled insights into the broader framework of environmental science. Topics within the scope of this journal include: • Population genomics and ecology • Evolutionary and developmental genomics • Comparative genomics • Metagenomics • Environmental genomics • Systems biology More specific topics include: geographic and phylogenomic characterization of aquatic organisms, metabolic capacities and pathways of organisms and communities, biogeochemical cycles, genomics and integrative approaches applied to microbial ecology including (meta)transcriptomics and (meta)proteomics, tracking of infectious diseases, environmental stress, global climate change and ecosystem modelling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信