Michael H Udin, Sara Armstrong, Alice Kai, Scott Doyle, Ciprian N Ionita, Saraswati Pokharel, Umesh C Sharma
{"title":"Lightweight preprocessing and template matching facilitate streamlined ischemic myocardial scar classification.","authors":"Michael H Udin, Sara Armstrong, Alice Kai, Scott Doyle, Ciprian N Ionita, Saraswati Pokharel, Umesh C Sharma","doi":"10.1117/1.JMI.11.2.024503","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Ischemic myocardial scarring (IMS) is a common outcome of coronary artery disease that potentially leads to lethal arrythmias and heart failure. Late-gadolinium-enhanced cardiac magnetic resonance (CMR) imaging scans have served as the diagnostic bedrock for IMS, with recent advancements in machine learning enabling enhanced scar classification. However, the trade-off for these improvements is intensive computational and time demands. As a solution, we propose a combination of lightweight preprocessing (LWP) and template matching (TM) to streamline IMS classification.</p><p><strong>Approach: </strong>CMR images from 279 patients (151 IMS, 128 control) were classified for IMS presence using two convolutional neural networks (CNNs) and TM, both with and without LWP. Evaluation metrics included accuracy, sensitivity, specificity, F1-score, area under the receiver operating characteristic curve (AUROC), and processing time. External testing dataset analysis encompassed patient-level classifications (PLCs) and a CNN versus TM classification comparison (CVTCC).</p><p><strong>Results: </strong>LWP enhanced the speed of both CNNs (4.9x) and TM (21.9x). Furthermore, in the absence of LWP, TM outpaced CNNs by over 10x, while with LWP, TM was more than 100x faster. Additionally, TM performed similarly to the CNNs in accuracy, sensitivity, specificity, F1-score, and AUROC, with PLCs demonstrating improvements across all five metrics. Moreover, the CVTCC revealed a substantial 90.9% agreement.</p><p><strong>Conclusions: </strong>Our results highlight the effectiveness of LWP and TM in streamlining IMS classification. Anticipated enhancements to LWP's region of interest (ROI) isolation and TM's ROI targeting are expected to boost accuracy, positioning them as a potential alternative to CNNs for IMS classification, supporting the need for further research.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 2","pages":"024503"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10956816/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.2.024503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Ischemic myocardial scarring (IMS) is a common outcome of coronary artery disease that potentially leads to lethal arrythmias and heart failure. Late-gadolinium-enhanced cardiac magnetic resonance (CMR) imaging scans have served as the diagnostic bedrock for IMS, with recent advancements in machine learning enabling enhanced scar classification. However, the trade-off for these improvements is intensive computational and time demands. As a solution, we propose a combination of lightweight preprocessing (LWP) and template matching (TM) to streamline IMS classification.
Approach: CMR images from 279 patients (151 IMS, 128 control) were classified for IMS presence using two convolutional neural networks (CNNs) and TM, both with and without LWP. Evaluation metrics included accuracy, sensitivity, specificity, F1-score, area under the receiver operating characteristic curve (AUROC), and processing time. External testing dataset analysis encompassed patient-level classifications (PLCs) and a CNN versus TM classification comparison (CVTCC).
Results: LWP enhanced the speed of both CNNs (4.9x) and TM (21.9x). Furthermore, in the absence of LWP, TM outpaced CNNs by over 10x, while with LWP, TM was more than 100x faster. Additionally, TM performed similarly to the CNNs in accuracy, sensitivity, specificity, F1-score, and AUROC, with PLCs demonstrating improvements across all five metrics. Moreover, the CVTCC revealed a substantial 90.9% agreement.
Conclusions: Our results highlight the effectiveness of LWP and TM in streamlining IMS classification. Anticipated enhancements to LWP's region of interest (ROI) isolation and TM's ROI targeting are expected to boost accuracy, positioning them as a potential alternative to CNNs for IMS classification, supporting the need for further research.
期刊介绍:
JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.