{"title":"Anti-cancer drug-mediated increase in mitochondrial mass limits the application of metabolic viability-based MTT assay in cytotoxicity screening","authors":"Abhishek Kumar, Yogesh Rai, Anant Narayan Bhatt","doi":"10.1007/s10616-024-00618-1","DOIUrl":null,"url":null,"abstract":"<p>The high-throughput metabolic viability-based colorimetric MTT test is commonly employed to screen the cytotoxicity of different chemotherapeutic drugs. The assay assumes a cell density-dependent linear correlation with the MTT spectral absorbance. Therefore, the present study aimed to compare the cytotoxicity assessment between the MTT assay and gold standard cell number enumeration. The cytotoxicity was induced by Cisplatin, Etoposide, and Doxorubicin in human lung epithelial adenocarcinoma cells (A549) and cervix carcinoma (HeLa) cell lines. The mitochondrial mass was estimated, and immunoblotting of succinate dehydrogenase (SDH-A) was performed following drug treatment in both cell lines. Student’s t-test paired analysis was employed to calculate the significance of the results, where the value <i>p</i> < 0.05 was considered statistically significant. The drug-induced cytotoxic response estimated by MTT absorbance did not show any significant difference with respect to control, and no correlation was observed with the enumerated cell number in both A549 and HeLa cells. Interestingly, per-cell metabolic viability was found to be increased by 1.18 to 3.26-fold (<i>p</i> < 0.05) following drug treatment. Further, mechanistic investigation revealed a drug concentration-dependent significant increase in mitochondrial mass (1.21 to 4.2-fold) and upregulation of SDH protein (50–70%) as well as enzymatic activity with respect to control in both A549 and Hela cells. The limitation of the MTT assay for drug-induced cytotoxicity assessment is due to increased mitochondrial mass and SDH upregulation in surviving cells, leading to enhanced formazan formation. This leads to a lack of correlation between cell number and MTT spectral absorbance, suggesting that the MTT assay may provide an erroneous conclusion for cytotoxicity assessment.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"21 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-024-00618-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The high-throughput metabolic viability-based colorimetric MTT test is commonly employed to screen the cytotoxicity of different chemotherapeutic drugs. The assay assumes a cell density-dependent linear correlation with the MTT spectral absorbance. Therefore, the present study aimed to compare the cytotoxicity assessment between the MTT assay and gold standard cell number enumeration. The cytotoxicity was induced by Cisplatin, Etoposide, and Doxorubicin in human lung epithelial adenocarcinoma cells (A549) and cervix carcinoma (HeLa) cell lines. The mitochondrial mass was estimated, and immunoblotting of succinate dehydrogenase (SDH-A) was performed following drug treatment in both cell lines. Student’s t-test paired analysis was employed to calculate the significance of the results, where the value p < 0.05 was considered statistically significant. The drug-induced cytotoxic response estimated by MTT absorbance did not show any significant difference with respect to control, and no correlation was observed with the enumerated cell number in both A549 and HeLa cells. Interestingly, per-cell metabolic viability was found to be increased by 1.18 to 3.26-fold (p < 0.05) following drug treatment. Further, mechanistic investigation revealed a drug concentration-dependent significant increase in mitochondrial mass (1.21 to 4.2-fold) and upregulation of SDH protein (50–70%) as well as enzymatic activity with respect to control in both A549 and Hela cells. The limitation of the MTT assay for drug-induced cytotoxicity assessment is due to increased mitochondrial mass and SDH upregulation in surviving cells, leading to enhanced formazan formation. This leads to a lack of correlation between cell number and MTT spectral absorbance, suggesting that the MTT assay may provide an erroneous conclusion for cytotoxicity assessment.
期刊介绍:
The scope of the Journal includes:
1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products.
2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools.
3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research.
4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy.
5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.