Effect of Heteronuclear Salicylate Complex {[FeSr2(SalH)2(Sal)2(NO3)(DMA)4]}n on Corrosion of Steel St. 3 in Water

IF 0.9 Q3 Engineering
V. V. Parshutin, A. V. Koval’, V. V. Gorinchoi, V. I. Lozan
{"title":"Effect of Heteronuclear Salicylate Complex {[FeSr2(SalH)2(Sal)2(NO3)(DMA)4]}n on Corrosion of Steel St. 3 in Water","authors":"V. V. Parshutin,&nbsp;A. V. Koval’,&nbsp;V. V. Gorinchoi,&nbsp;V. I. Lozan","doi":"10.3103/S1068375524010137","DOIUrl":null,"url":null,"abstract":"<p>The corrosion process of steel St. 3 in water with the addition of a heteronuclear salicylate complex {[FeSr<sub>2</sub>(SalH)<sub>2</sub>(Sal)<sub>2</sub>(NO<sub>3</sub>)(DMA)<sub>4</sub>]}<sub><i>n</i></sub> by gravimetric, electrochemical, and physicochemical methods (X‑ray phase analysis, UV, IR and Mössbauer spectroscopy) has been studied. It has been shown that the introduction of the additive under study into a corrosive environment significantly reduces steel corrosion. Depending on the duration of the tests and the concentration of the inhibitor, the corrosion rate is reduced by 5.1–11.1 times with a degree of protection of 80.5–91.0%. A mechanism of inhibition has been proposed. The inclusion of products of interaction of ionized iron with the complex in the coating layers has been proven.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 1","pages":"109 - 121"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1068375524010137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The corrosion process of steel St. 3 in water with the addition of a heteronuclear salicylate complex {[FeSr2(SalH)2(Sal)2(NO3)(DMA)4]}n by gravimetric, electrochemical, and physicochemical methods (X‑ray phase analysis, UV, IR and Mössbauer spectroscopy) has been studied. It has been shown that the introduction of the additive under study into a corrosive environment significantly reduces steel corrosion. Depending on the duration of the tests and the concentration of the inhibitor, the corrosion rate is reduced by 5.1–11.1 times with a degree of protection of 80.5–91.0%. A mechanism of inhibition has been proposed. The inclusion of products of interaction of ionized iron with the complex in the coating layers has been proven.

Abstract Image

Abstract Image

水杨酸异核络合物 {[FeSr2(SalH)2(Sal)2(NO3)(DMA)4]}n 对 St.
摘要 通过重量法、电化学法和物理化学法(X 射线相分析法、紫外光谱法、红外光谱法和莫斯鲍尔光谱法),研究了添加杂核水杨酸络合物 {[FeSr2(SalH)2(Sal)2(NO3)(DMA)4]}n 的 St.结果表明,在腐蚀性环境中引入所研究的添加剂可显著减少钢的腐蚀。根据试验时间的长短和抑制剂的浓度,腐蚀速度可降低 5.1-11.1 倍,保护程度为 80.5-91.0%。提出了一种抑制机制。事实证明,涂层中含有离子化铁与络合物相互作用的产物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Surface Engineering and Applied Electrochemistry
Surface Engineering and Applied Electrochemistry Engineering-Industrial and Manufacturing Engineering
CiteScore
1.60
自引率
22.20%
发文量
54
期刊介绍: Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信