{"title":"Fault diagnosis with high accuracy and timeliness for semi-batch crystallization process based on deep learning with multiple pattern representation","authors":"Silin Rao, Ziteng Wang, Jingtao Wang","doi":"10.1002/cjce.25247","DOIUrl":null,"url":null,"abstract":"<p>The research on chemical process fault diagnosis has made significant progress, but there is still a big gap in its application to complex practical industrial processes. As for the fault diagnosis of batch crystallization processes, the recently-proposed dynamic time warping–convolutional neural network (DTW-CNN) model has achieved a great improvement in the fault diagnosis. However, its fault diagnosis rate (FDR) and timeliness of fault diagnosis are still low, and thus, it needs to improve further before being applied to the practical application. In this paper, a multiple pattern representation–convolutional neural network (MPR-CNN) model is proposed and applied for the fault diagnosis of a semi-batch crystallization process. The MPR-CNN model enables the manual extraction of features with four pattern representation algorithms in the data pre-processing stage, and generates a three-dimensional matrix which is used as the training sample and input to the CNN for the formal feature extraction and weight learning. An excellent classification performance, with an average FDR of 97.5%, is achieved. This model is also applied for the fault diagnosis of process data within a shorter period of time after the occurrence of faults. The results indicate that the model could make timely fault diagnosis with a highly stable and accurate performance after the occurrence of a fault.</p>","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25247","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The research on chemical process fault diagnosis has made significant progress, but there is still a big gap in its application to complex practical industrial processes. As for the fault diagnosis of batch crystallization processes, the recently-proposed dynamic time warping–convolutional neural network (DTW-CNN) model has achieved a great improvement in the fault diagnosis. However, its fault diagnosis rate (FDR) and timeliness of fault diagnosis are still low, and thus, it needs to improve further before being applied to the practical application. In this paper, a multiple pattern representation–convolutional neural network (MPR-CNN) model is proposed and applied for the fault diagnosis of a semi-batch crystallization process. The MPR-CNN model enables the manual extraction of features with four pattern representation algorithms in the data pre-processing stage, and generates a three-dimensional matrix which is used as the training sample and input to the CNN for the formal feature extraction and weight learning. An excellent classification performance, with an average FDR of 97.5%, is achieved. This model is also applied for the fault diagnosis of process data within a shorter period of time after the occurrence of faults. The results indicate that the model could make timely fault diagnosis with a highly stable and accurate performance after the occurrence of a fault.
期刊介绍:
The Canadian Journal of Chemical Engineering (CJChE) publishes original research articles, new theoretical interpretation or experimental findings and critical reviews in the science or industrial practice of chemical and biochemical processes. Preference is given to papers having a clearly indicated scope and applicability in any of the following areas: Fluid mechanics, heat and mass transfer, multiphase flows, separations processes, thermodynamics, process systems engineering, reactors and reaction kinetics, catalysis, interfacial phenomena, electrochemical phenomena, bioengineering, minerals processing and natural products and environmental and energy engineering. Papers that merely describe or present a conventional or routine analysis of existing processes will not be considered.