{"title":"Distribution and Potential Ecophysiological Roles of Multiple GroEL Chaperonins in Pink-Pigmented Facultative Methylotrophs","authors":"","doi":"10.1134/s0026261723601768","DOIUrl":null,"url":null,"abstract":"<span> <h3>Abstract</h3> <p>The distribution and phylogeny of the GroEL chaperonin genes in the type strains of all described species of pink-pigmented methylotrophic bacteria (PPFM) belonging to the genera <em>Methylobacterium</em> and <em>Methylorubrum</em> were analyzed. Half of the bacterial strains tested (38 out of 69) were found to possess multiple <em>groEL</em> genes. Analysis of their translated amino acid sequences and promoter regions preceding the <em>groESL</em> operons that include them demonstrated that the GroEL chaperonins of these methylotrophs form three similarity groups typical of PPFM. The largest of these (GroEL1) combines, apparently, essential housekeeping chaperonins, and the other two consist of additional separately clustered proteins that differ in the composition of the elements regulating their gene expression. The strains encoding proteins of the GroEL2 group were isolated from various environments, including those contaminated with industrially produced C<sub>1</sub>-compounds, while bacteria possessing GroEL3-like chaperonins are predominantly plant symbionts. It has been proposed that GroEL3 proteins may be involved in phytosymbiotic processes, whereas GroEL2 chaperonins can participate in response to specific stresses experienced by host cells in their habitats. At the same time, the GroEL chaperonin of <em>Methylobacterium brachiatum</em> B0021<sup>T</sup>, atypical for PPFM, seem to be intended for folding of dinuclear iron monooxygenase, in whose gene cluster it is encoded. Further testing of these assumptions should elucidate the roles of multiple GroEL chaperonins in PPFM and allow more complete use of their biotechnological potential as plant growth stimulants and biodegradation/bioremediation agents.</p> </span>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1134/s0026261723601768","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The distribution and phylogeny of the GroEL chaperonin genes in the type strains of all described species of pink-pigmented methylotrophic bacteria (PPFM) belonging to the genera Methylobacterium and Methylorubrum were analyzed. Half of the bacterial strains tested (38 out of 69) were found to possess multiple groEL genes. Analysis of their translated amino acid sequences and promoter regions preceding the groESL operons that include them demonstrated that the GroEL chaperonins of these methylotrophs form three similarity groups typical of PPFM. The largest of these (GroEL1) combines, apparently, essential housekeeping chaperonins, and the other two consist of additional separately clustered proteins that differ in the composition of the elements regulating their gene expression. The strains encoding proteins of the GroEL2 group were isolated from various environments, including those contaminated with industrially produced C1-compounds, while bacteria possessing GroEL3-like chaperonins are predominantly plant symbionts. It has been proposed that GroEL3 proteins may be involved in phytosymbiotic processes, whereas GroEL2 chaperonins can participate in response to specific stresses experienced by host cells in their habitats. At the same time, the GroEL chaperonin of Methylobacterium brachiatum B0021T, atypical for PPFM, seem to be intended for folding of dinuclear iron monooxygenase, in whose gene cluster it is encoded. Further testing of these assumptions should elucidate the roles of multiple GroEL chaperonins in PPFM and allow more complete use of their biotechnological potential as plant growth stimulants and biodegradation/bioremediation agents.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.