Optimizing serverless computing: A comparative analysis of multi-output regression models for predictive function invocations

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Mustafa Daraghmeh , Anjali Agarwal , Yaser Jararweh
{"title":"Optimizing serverless computing: A comparative analysis of multi-output regression models for predictive function invocations","authors":"Mustafa Daraghmeh ,&nbsp;Anjali Agarwal ,&nbsp;Yaser Jararweh","doi":"10.1016/j.simpat.2024.102925","DOIUrl":null,"url":null,"abstract":"<div><p>In the rapidly evolving domain of serverless computing, the need for efficient and accurate predictive methods of function invocation becomes paramount. This study introduces a comprehensive suite of innovations to improve the predictability and efficiency of function invocation within serverless architectures. By employing multi-output regression models, we perform a multi-level analysis of function invocation patterns across user, application, and function levels, revealing insights into granular workload behaviors. We rigorously investigate the impact of windowing techniques and dimensionality reduction on model performance via Principal Component Analysis (PCA), offering a nuanced understanding of data complexities and computational implications. Our novel comparative analysis framework meticulously evaluates the performance of these methods against various windowing configurations, utilizing the Azure Functions dataset for real-world applicability. In addition, we assess the temporal stability of the models and the variation of day-to-day performance, providing a holistic view of their operational viability. Our contributions address critical gaps in the predictive modeling of serverless computing and set a new benchmark for operational efficiency and data-driven decision-making in cloud environments. This study is poised to guide future advancements in serverless computing, driving theoretically sound and practically viable innovations.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569190X2400039X/pdfft?md5=b932b4c65c3822489417ec48684adc09&pid=1-s2.0-S1569190X2400039X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X2400039X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In the rapidly evolving domain of serverless computing, the need for efficient and accurate predictive methods of function invocation becomes paramount. This study introduces a comprehensive suite of innovations to improve the predictability and efficiency of function invocation within serverless architectures. By employing multi-output regression models, we perform a multi-level analysis of function invocation patterns across user, application, and function levels, revealing insights into granular workload behaviors. We rigorously investigate the impact of windowing techniques and dimensionality reduction on model performance via Principal Component Analysis (PCA), offering a nuanced understanding of data complexities and computational implications. Our novel comparative analysis framework meticulously evaluates the performance of these methods against various windowing configurations, utilizing the Azure Functions dataset for real-world applicability. In addition, we assess the temporal stability of the models and the variation of day-to-day performance, providing a holistic view of their operational viability. Our contributions address critical gaps in the predictive modeling of serverless computing and set a new benchmark for operational efficiency and data-driven decision-making in cloud environments. This study is poised to guide future advancements in serverless computing, driving theoretically sound and practically viable innovations.

优化无服务器计算:预测函数调用的多输出回归模型比较分析
在快速发展的无服务器计算领域,对高效、准确的函数调用预测方法的需求变得至关重要。本研究引入了一整套创新方法,以提高无服务器架构中函数调用的可预测性和效率。通过采用多输出回归模型,我们对跨用户、应用程序和函数级别的函数调用模式进行了多层次分析,从而揭示了细粒度工作负载行为。我们通过主成分分析(PCA)严格研究了窗口技术和降维对模型性能的影响,从而对数据复杂性和计算影响有了细致入微的了解。我们新颖的比较分析框架利用 Azure Functions 数据集,针对各种窗口配置对这些方法的性能进行了细致的评估,以确保其在现实世界中的适用性。此外,我们还评估了模型的时间稳定性和日常性能的变化,从而全面了解了这些模型的运行可行性。我们的贡献填补了无服务器计算预测建模的关键空白,并为云环境中的运行效率和数据驱动决策设定了新基准。这项研究有望指导无服务器计算的未来发展,推动理论上合理、实践上可行的创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信