Probabilistic identification method for seismic failure modes of reinforced concrete beam-column joints using Gaussian process with deep kernel

IF 3 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Zecheng Yu , Bo Yu , Bing Li
{"title":"Probabilistic identification method for seismic failure modes of reinforced concrete beam-column joints using Gaussian process with deep kernel","authors":"Zecheng Yu ,&nbsp;Bo Yu ,&nbsp;Bing Li","doi":"10.1016/j.probengmech.2024.103610","DOIUrl":null,"url":null,"abstract":"<div><p>Identifying the seismic failure modes of beam-column joints (BCJs) is crucial for the safety and integrity of reinforced concrete (RC) buildings or structures withstanding seismic forces. However, traditional identification methods fail to provide any indication about the uncertainties within their predictions, which is beneficial for evaluating, interpreting and improving these predictions. This study develops a probabilistic identification method for seismic failure modes of BCJs using Gaussian process (GP) with a deep kernel, which integrates the representational power of deep neural networks with the flexible structure of kernel functions to accurately represent the evolution characteristics of seismic failure modes of BCJs. Analysis results demonstrated the potential of the proposed method for improving the classification accuracy of traditional GPs, as well as its superiority over the prediction accuracy of traditional shear-resistance design methods and machine learning techniques. Furthermore, the proposed method also provides an efficient approach to estimate the uncertainties within their predictions for seismic failure modes of BCJs.</p></div>","PeriodicalId":54583,"journal":{"name":"Probabilistic Engineering Mechanics","volume":"76 ","pages":"Article 103610"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probabilistic Engineering Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266892024000328","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying the seismic failure modes of beam-column joints (BCJs) is crucial for the safety and integrity of reinforced concrete (RC) buildings or structures withstanding seismic forces. However, traditional identification methods fail to provide any indication about the uncertainties within their predictions, which is beneficial for evaluating, interpreting and improving these predictions. This study develops a probabilistic identification method for seismic failure modes of BCJs using Gaussian process (GP) with a deep kernel, which integrates the representational power of deep neural networks with the flexible structure of kernel functions to accurately represent the evolution characteristics of seismic failure modes of BCJs. Analysis results demonstrated the potential of the proposed method for improving the classification accuracy of traditional GPs, as well as its superiority over the prediction accuracy of traditional shear-resistance design methods and machine learning techniques. Furthermore, the proposed method also provides an efficient approach to estimate the uncertainties within their predictions for seismic failure modes of BCJs.

利用带深核的高斯过程对钢筋混凝土梁柱连接处的地震破坏模式进行概率识别的方法
识别梁柱连接(BCJ)的地震破坏模式对于钢筋混凝土(RC)建筑或结构承受地震力的安全性和完整性至关重要。然而,传统的识别方法无法说明其预测结果的不确定性,而这种不确定性有利于评估、解释和改进这些预测结果。本研究利用带深度核的高斯过程(GP)开发了一种 BCJ 地震破坏模式的概率识别方法。首先,通过将深度神经网络架构转化为核函数特征,提出了一种能合理描述 BCJ 地震破坏模式演化特征的深度核架构。然后,通过将深度核架构集成到 GP(DGP)中,开发了一种 BCJ 地震破坏模式的概率识别方法。同时,通过随机变量推理(SVI)策略优化了 DGP 的超参数。最后,基于 289 组实验数据,通过与传统抗剪设计方法和机器学习技术进行比较,对所开发的 DGP 进行了评估。分析结果表明,所提出的方法具有提高传统 GP 分类准确性的潜力,其预测准确性也优于传统抗剪设计方法和机器学习技术。此外,所提出的方法还提供了一种有效的方法来估算其对 BCJ 地震破坏模式预测的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probabilistic Engineering Mechanics
Probabilistic Engineering Mechanics 工程技术-工程:机械
CiteScore
3.80
自引率
15.40%
发文量
98
审稿时长
13.5 months
期刊介绍: This journal provides a forum for scholarly work dealing primarily with probabilistic and statistical approaches to contemporary solid/structural and fluid mechanics problems encountered in diverse technical disciplines such as aerospace, civil, marine, mechanical, and nuclear engineering. The journal aims to maintain a healthy balance between general solution techniques and problem-specific results, encouraging a fruitful exchange of ideas among disparate engineering specialities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信