Jun Lee, Taewan Kim, Seungho Bang, Sehong Oh, Hyun Kwon
{"title":"Evasion Attacks on Deep Learning-Based Helicopter Recognition Systems","authors":"Jun Lee, Taewan Kim, Seungho Bang, Sehong Oh, Hyun Kwon","doi":"10.1155/2024/1124598","DOIUrl":null,"url":null,"abstract":"Identifying objects in surveillance and reconnaissance systems with the human eye can be challenging, underscoring the growing importance of employing deep learning models for the recognition of enemy weapon systems. These systems, leveraging deep neural networks known for their strong performance in image recognition and classification, are currently under extensive research. However, it is crucial to acknowledge that surveillance and reconnaissance systems utilizing deep neural networks are susceptible to vulnerabilities posed by adversarial examples. While prior adversarial example research has mainly utilized publicly available internet data, there has been a significant absence of studies concerning adversarial attacks on data and models specific to real military scenarios. In this paper, we introduce an adversarial example designed for a binary classifier tasked with recognizing helicopters. Our approach generates an adversarial example that is misclassified by the model, despite appearing unproblematic to the human eye. To conduct our experiments, we gathered real attack and transport helicopters and employed TensorFlow as the machine learning library of choice. Our experimental findings demonstrate that the average attack success rate of the proposed method is 81.9%. Additionally, when epsilon is 0.4, the attack success rate is 90.1%. Before epsilon reaches 0.4, the attack success rate increases rapidly, and then we can see that epsilon increases little by little thereafter.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/1124598","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying objects in surveillance and reconnaissance systems with the human eye can be challenging, underscoring the growing importance of employing deep learning models for the recognition of enemy weapon systems. These systems, leveraging deep neural networks known for their strong performance in image recognition and classification, are currently under extensive research. However, it is crucial to acknowledge that surveillance and reconnaissance systems utilizing deep neural networks are susceptible to vulnerabilities posed by adversarial examples. While prior adversarial example research has mainly utilized publicly available internet data, there has been a significant absence of studies concerning adversarial attacks on data and models specific to real military scenarios. In this paper, we introduce an adversarial example designed for a binary classifier tasked with recognizing helicopters. Our approach generates an adversarial example that is misclassified by the model, despite appearing unproblematic to the human eye. To conduct our experiments, we gathered real attack and transport helicopters and employed TensorFlow as the machine learning library of choice. Our experimental findings demonstrate that the average attack success rate of the proposed method is 81.9%. Additionally, when epsilon is 0.4, the attack success rate is 90.1%. Before epsilon reaches 0.4, the attack success rate increases rapidly, and then we can see that epsilon increases little by little thereafter.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.