Fabian Knorr, Philip Salzmann, Peter Thoman, Thomas Fahringer
{"title":"Automatic Discovery of Collective Communication Patterns in Parallelized Task Graphs","authors":"Fabian Knorr, Philip Salzmann, Peter Thoman, Thomas Fahringer","doi":"10.1007/s10766-024-00767-y","DOIUrl":null,"url":null,"abstract":"<p>Collective communication APIs equip MPI vendors with the necessary context to optimize cluster-wide operations on the basis of theoretical complexity models and characteristics of the involved interconnects. Modern HPC runtime systems with a programmability focus can perform dependency analysis to eliminate the need for manual communication entirely. Profiting from optimized collective routines in this context often requires global analysis of the implicit point-to-point communication pattern or tight constrains on the data access patterns allowed inside kernels. The Celerity API provides a high degree of freedom for both runtime implementors and application developers by tieing transparent work assignment to data access patterns through user-defined range-mapper functions. Canonically, data dependencies are resolved through an intra-node coherence model and inter-node point-to-point communication. This paper presents Collective Pattern Discovery (CPD), a fully distributed, coordination-free method for detecting collective communication patterns on parallelized task graphs. Through extensive scheduling and communication microbenchmarks as well as a strong scaling experiment on a compute-intensive application, we demonstrate that CPD can achieve substantial performance gains in the Celerity model.</p>","PeriodicalId":14313,"journal":{"name":"International Journal of Parallel Programming","volume":"18 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Parallel Programming","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10766-024-00767-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Collective communication APIs equip MPI vendors with the necessary context to optimize cluster-wide operations on the basis of theoretical complexity models and characteristics of the involved interconnects. Modern HPC runtime systems with a programmability focus can perform dependency analysis to eliminate the need for manual communication entirely. Profiting from optimized collective routines in this context often requires global analysis of the implicit point-to-point communication pattern or tight constrains on the data access patterns allowed inside kernels. The Celerity API provides a high degree of freedom for both runtime implementors and application developers by tieing transparent work assignment to data access patterns through user-defined range-mapper functions. Canonically, data dependencies are resolved through an intra-node coherence model and inter-node point-to-point communication. This paper presents Collective Pattern Discovery (CPD), a fully distributed, coordination-free method for detecting collective communication patterns on parallelized task graphs. Through extensive scheduling and communication microbenchmarks as well as a strong scaling experiment on a compute-intensive application, we demonstrate that CPD can achieve substantial performance gains in the Celerity model.
期刊介绍:
International Journal of Parallel Programming is a forum for the publication of peer-reviewed, high-quality original papers in the computer and information sciences, focusing specifically on programming aspects of parallel computing systems. Such systems are characterized by the coexistence over time of multiple coordinated activities. The journal publishes both original research and survey papers. Fields of interest include: linguistic foundations, conceptual frameworks, high-level languages, evaluation methods, implementation techniques, programming support systems, pragmatic considerations, architectural characteristics, software engineering aspects, advances in parallel algorithms, performance studies, and application studies.