The Role of Ionizing Radiation in the Biosphere and Human Evolution

IF 0.9 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES
A. V. Manankov
{"title":"The Role of Ionizing Radiation in the Biosphere and Human Evolution","authors":"A. V. Manankov","doi":"10.1134/s0001433823110105","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">\n<b>Abstract</b>—</h3><p>Natural radiation is an integral component and obligatory factor in the self-development of the biosphere. There are two sources of natural radiation on Earth: radioactive elements in minerals of the Earth’s crust and inner geospheres and radiation belts, the existence of which was established in the late 1950s. The coevolution of living objects with natural factors, including ionizing radiation, occurs according to the mechanism of homeostatic self-regulation with the participation of negative feedback. Outside the zone of homeostasis, any living species falls into supercritical zones with positive feedbacks, where deviations from a stable state can become irreversible. The effect of ionizing radiation on biological objects has not been sufficiently studied, which is why existing radiation safety standards still do not take into account positive feedback. The author believes that it is necessary to develop a modern unified concept of radiation gene-natural coevolution, in which the radioecogeochemical law of nature, implemented through the periodic-rhythmic evolution of the biosphere, is substantiated from the position of system analysis. In other words, it is proposed to introduce the radiation factor into the prevailing Lamarck–Darwin theory of anthropogenesis as the main driving force. Spatiotemporal coincidence was established between the powerful geodynamic activity of the East African Rift, the operation of a natural nuclear reactor in the area of the Oklo uranium deposit (Gabon), and discharge from our humanoid ancestor—Australopithecus africanus, or afarensis. The article discusses some specific features of human genealogy under conditions of prolonged natural radiation. The dominant role of implicit memory in the awareness of ego stress in the formation of radiophobia is shown. The new direction, undoubtedly, should contribute to solving topical applied issues related to increasing safety in the construction of nuclear industry structures, overcoming radiophobia, increasing the radioresistance of ethnic groups, and optimizing of the regulatory framework of ROSATOM and the IAEA in the field of nuclear energy use.</p>","PeriodicalId":54911,"journal":{"name":"Izvestiya Atmospheric and Oceanic Physics","volume":"3 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Atmospheric and Oceanic Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1134/s0001433823110105","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Natural radiation is an integral component and obligatory factor in the self-development of the biosphere. There are two sources of natural radiation on Earth: radioactive elements in minerals of the Earth’s crust and inner geospheres and radiation belts, the existence of which was established in the late 1950s. The coevolution of living objects with natural factors, including ionizing radiation, occurs according to the mechanism of homeostatic self-regulation with the participation of negative feedback. Outside the zone of homeostasis, any living species falls into supercritical zones with positive feedbacks, where deviations from a stable state can become irreversible. The effect of ionizing radiation on biological objects has not been sufficiently studied, which is why existing radiation safety standards still do not take into account positive feedback. The author believes that it is necessary to develop a modern unified concept of radiation gene-natural coevolution, in which the radioecogeochemical law of nature, implemented through the periodic-rhythmic evolution of the biosphere, is substantiated from the position of system analysis. In other words, it is proposed to introduce the radiation factor into the prevailing Lamarck–Darwin theory of anthropogenesis as the main driving force. Spatiotemporal coincidence was established between the powerful geodynamic activity of the East African Rift, the operation of a natural nuclear reactor in the area of the Oklo uranium deposit (Gabon), and discharge from our humanoid ancestor—Australopithecus africanus, or afarensis. The article discusses some specific features of human genealogy under conditions of prolonged natural radiation. The dominant role of implicit memory in the awareness of ego stress in the formation of radiophobia is shown. The new direction, undoubtedly, should contribute to solving topical applied issues related to increasing safety in the construction of nuclear industry structures, overcoming radiophobia, increasing the radioresistance of ethnic groups, and optimizing of the regulatory framework of ROSATOM and the IAEA in the field of nuclear energy use.

Abstract Image

电离辐射在生物圈和人类进化中的作用
摘要--天然辐射是生物圈自我发展不可或缺的组成部分和必备因素。地球上的天然辐射有两个来源:地壳和内地球圈矿物中的放射性元素以及辐射带,辐射带的存在于 20 世纪 50 年代末被确定。生物与自然因素(包括电离辐射)的共同进化是在负反馈的参与下,根据平衡自我调节机制进行的。在平衡区之外,任何生物物种都会陷入具有正反馈的超临界区,在那里,偏离稳定状态会变得不可逆转。电离辐射对生物物体的影响尚未得到充分研究,这也是现行辐射安全标准仍未考虑正反馈的原因。作者认为,有必要建立辐射基因-自然协同进化的现代统一概念,从系统分析的立场出发,通过生物圈的周期性-节律性进化来证实自然界的辐射地球化学规律。换句话说,建议将辐射因素作为主要驱动力引入现行的拉马克-达尔文人类起源理论。东非大裂谷强大的地球动力活动、Oklo 铀矿(加蓬)地区天然核反应堆的运行以及类人猿祖先--澳大利亚非洲类人猿(或称非洲人猿)的排出之间的时空巧合被确定下来。文章讨论了在长期自然辐射条件下人类谱系的一些具体特征。内隐记忆在形成辐射恐惧症的自我压力意识中起着主导作用。毫无疑问,这一新方向将有助于解决与提高核工业结构建设的安全性、克服辐射恐惧症、提高种族群体的抗辐射能力以及优化俄罗斯原子能机构和国际原子能机构在核能利用领域的监管框架有关的应用问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
28.60%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Izvestiya, Atmospheric and Oceanic Physics is a journal that publishes original scientific research and review articles on vital issues in the physics of the Earth’s atmosphere and hydrosphere and climate theory. The journal presents results of recent studies of physical processes in the atmosphere and ocean that control climate, weather, and their changes. These studies have possible practical applications. The journal also gives room to the discussion of results obtained in theoretical and experimental studies in various fields of oceanic and atmospheric physics, such as the dynamics of gas and water media, interaction of the atmosphere with the ocean and land surfaces, turbulence theory, heat balance and radiation processes, remote sensing and optics of both media, natural and man-induced climate changes, and the state of the atmosphere and ocean. The journal publishes papers on research techniques used in both media, current scientific information on domestic and foreign events in the physics of the atmosphere and ocean.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信