Probing Weyl-type f(Q,T) gravity: Cosmological implications and constraints

IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
A.H.A. Alfedeel , M. Koussour , N. Myrzakulov
{"title":"Probing Weyl-type f(Q,T) gravity: Cosmological implications and constraints","authors":"A.H.A. Alfedeel ,&nbsp;M. Koussour ,&nbsp;N. Myrzakulov","doi":"10.1016/j.ascom.2024.100821","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate the cosmological implications and constraints of Weyl-type <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> gravity. This theory introduces a coupling between the non-metricity <span><math><mi>Q</mi></math></span> and the trace <span><math><mi>T</mi></math></span> of the energy–momentum tensor, using the principles of proper Weyl geometry. In this geometry, the scalar non-metricity <span><math><mi>Q</mi></math></span>, which characterizes the deviations from Riemannian geometry, is expressed in its standard Weyl form <span><math><mrow><msub><mrow><mo>∇</mo></mrow><mrow><mi>μ</mi></mrow></msub><msub><mrow><mi>g</mi></mrow><mrow><mi>α</mi><mi>β</mi></mrow></msub><mo>=</mo><mo>−</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>μ</mi></mrow></msub><msub><mrow><mi>g</mi></mrow><mrow><mi>α</mi><mi>β</mi></mrow></msub></mrow></math></span> and is determined by a vector field <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>μ</mi></mrow></msub></math></span>. To study the implications of this theory, we propose a deceleration parameter with a single unknown parameter <span><math><mi>χ</mi></math></span>, which we constrain by using the latest cosmological data. By solving the field equations derived from Weyl-type <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> gravity, we aim to understand the behavior of the energy conditions within this framework. In the present work, we consider two well-motivated forms of the function <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>: (i) the linear model represented by <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><mi>Q</mi><mo>+</mo><mfrac><mrow><mi>β</mi></mrow><mrow><mn>6</mn><msup><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mi>T</mi></mrow></math></span>, and (ii) the coupling model represented by <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>γ</mi></mrow><mrow><mn>6</mn><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msubsup><msup><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mi>Q</mi><mi>T</mi></mrow></math></span>, where <span><math><mi>α</mi></math></span>, <span><math><mi>β</mi></math></span>, and <span><math><mi>γ</mi></math></span> are free parameters. Here, <span><math><mrow><msup><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>16</mn><mi>π</mi><mi>G</mi></mrow></mfrac></mrow></math></span> represents the gravitational coupling constant. In both of the models considered, the strong energy condition is violated, indicating consistency with the present accelerated expansion. However, the null, weak, and dominant energy conditions are satisfied in these models.</p></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"47 ","pages":"Article 100821"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133724000362","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the cosmological implications and constraints of Weyl-type f(Q,T) gravity. This theory introduces a coupling between the non-metricity Q and the trace T of the energy–momentum tensor, using the principles of proper Weyl geometry. In this geometry, the scalar non-metricity Q, which characterizes the deviations from Riemannian geometry, is expressed in its standard Weyl form μgαβ=wμgαβ and is determined by a vector field wμ. To study the implications of this theory, we propose a deceleration parameter with a single unknown parameter χ, which we constrain by using the latest cosmological data. By solving the field equations derived from Weyl-type f(Q,T) gravity, we aim to understand the behavior of the energy conditions within this framework. In the present work, we consider two well-motivated forms of the function f(Q,T): (i) the linear model represented by f(Q,T)=αQ+β6κ2T, and (ii) the coupling model represented by f(Q,T)=γ6H02κ2QT, where α, β, and γ are free parameters. Here, κ2=116πG represents the gravitational coupling constant. In both of the models considered, the strong energy condition is violated, indicating consistency with the present accelerated expansion. However, the null, weak, and dominant energy conditions are satisfied in these models.

探索韦尔型[公式省略]引力:宇宙学影响和约束
在本文中,我们研究了韦尔型引力的宇宙学意义和约束。该理论利用适当的韦尔几何原理,引入了非度量性与能动张量迹之间的耦合。在这种几何中,标量非度量性(表征对黎曼几何的偏离)以其标准的韦尔形式表示,并由一个矢量场决定。为了研究这一理论的影响,我们提出了一个具有单一未知参数的减速参数,并利用最新的宇宙学数据对其进行约束。通过求解从韦尔型引力导出的场方程,我们旨在理解这一框架内能量条件的行为。在本研究中,我们考虑了函数的两种动机良好的形式:(i)线性模型,用 ,表示;(ii)耦合模型,用 ,表示,其中 , , 和 是自由参数。这里,表示引力耦合常数。在这两个模型中,都违反了强能量条件,这表明与目前的加速膨胀是一致的。然而,在这些模型中,空能、弱能和主能条件都得到了满足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy and Computing
Astronomy and Computing ASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍: Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信