Polyethyleneimine-immobilized CoCl2 nanoparticles: Synthesis, characterization, application as a new efficient and reusable nanocomposite catalyst for one-step transesterification reaction

IF 1.8 3区 化学 Q3 CHEMISTRY, ORGANIC
Tahereh Darvishi , Sedigheh Azadi , Nooredin Goudarzian
{"title":"Polyethyleneimine-immobilized CoCl2 nanoparticles: Synthesis, characterization, application as a new efficient and reusable nanocomposite catalyst for one-step transesterification reaction","authors":"Tahereh Darvishi ,&nbsp;Sedigheh Azadi ,&nbsp;Nooredin Goudarzian","doi":"10.1080/00397911.2024.2328287","DOIUrl":null,"url":null,"abstract":"<div><p>Polyethyleneimine-supported cobalt (II) chloride as a novel polymeric nanocomposite acidic catalyst for the one-stage transesterification reaction of ethyl acetate with various alcohols is reported. The catalyst was characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction, transmission electron microscopy, scanning electron microscopy, dynamic light scattering technique, and thermal gravimetric analysis. Furthermore, inductively coupled plasma and atomic absorption spectroscopy were used to determine the quantity of Cobalt nanoparticles in the catalyst. By adding the catalyst (0.10 g, 0.20 mol%) and n-hexane/chloroform (5.0 cm<sup>3</sup>) as solvent under reflux conditions, the studies demonstrated successful transesterification reactions with excellent yields (80–98%) and short reaction times (0.50–1.30 h) using various substrates on the scale of 1.0 mmol. Seven consecutive reactions could be performed on the catalyst without significantly decreasing its activity. The most noteworthy aspects of this process are its low cost, safety, and environmental friendliness due to the catalyst’s non-toxicity, straightforward operation, and effective outcomes.</p></div>","PeriodicalId":22119,"journal":{"name":"Synthetic Communications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S0039791124000225","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Polyethyleneimine-supported cobalt (II) chloride as a novel polymeric nanocomposite acidic catalyst for the one-stage transesterification reaction of ethyl acetate with various alcohols is reported. The catalyst was characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction, transmission electron microscopy, scanning electron microscopy, dynamic light scattering technique, and thermal gravimetric analysis. Furthermore, inductively coupled plasma and atomic absorption spectroscopy were used to determine the quantity of Cobalt nanoparticles in the catalyst. By adding the catalyst (0.10 g, 0.20 mol%) and n-hexane/chloroform (5.0 cm3) as solvent under reflux conditions, the studies demonstrated successful transesterification reactions with excellent yields (80–98%) and short reaction times (0.50–1.30 h) using various substrates on the scale of 1.0 mmol. Seven consecutive reactions could be performed on the catalyst without significantly decreasing its activity. The most noteworthy aspects of this process are its low cost, safety, and environmental friendliness due to the catalyst’s non-toxicity, straightforward operation, and effective outcomes.

聚乙烯亚胺固定的 CoCl2 纳米颗粒:一步法酯交换反应的新型高效可重复使用纳米复合催化剂的合成、表征和应用
报道了聚乙烯亚胺支撑的氯化钴 (II) 作为一种新型聚合物纳米复合酸性催化剂,用于乙酸乙酯与各种醇的一段式酯交换反应...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Synthetic Communications
Synthetic Communications 化学-有机化学
CiteScore
4.40
自引率
4.80%
发文量
156
审稿时长
4.3 months
期刊介绍: Synthetic Communications presents communications describing new methods, reagents, and other synthetic work pertaining to organic chemistry with sufficient experimental detail to permit reported reactions to be repeated by a chemist reasonably skilled in the art. In addition, the Journal features short, focused review articles discussing topics within its remit of synthetic organic chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信