A nanozyme based wearable device for colorimetric monitoring of UV radiation exposure in sunlight

IF 1.2 4区 化学 Q4 CHEMISTRY, ANALYTICAL
Guofen ZHOU , Linlin YU , Wenlong GUO , Zhongwei JIANG , Lianzhe HU , Min WANG
{"title":"A nanozyme based wearable device for colorimetric monitoring of UV radiation exposure in sunlight","authors":"Guofen ZHOU ,&nbsp;Linlin YU ,&nbsp;Wenlong GUO ,&nbsp;Zhongwei JIANG ,&nbsp;Lianzhe HU ,&nbsp;Min WANG","doi":"10.1016/j.cjac.2024.100377","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, nanozyme is used for monitoring the dose of ultraviolet (UV) in sunlight for the first time. We find that nitrogen-doped carbon dots (N-doped C-dots) can effectively catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) under different UV region including UVA, UVB, and UVC. In comparison, the N-doped C-dots fail to show the catalytic activity under visible light. The finding is applied for distinguishing UV light and visible light through the color change of TMB. More importantly, the photo-oxidation TMB catalyzed by N-doped C-dots can work well in a near neutral pH, which is beneficial for its application in wearable device due to the reducing of acid corrosion. Finally, a wearable bracelet is fabricated by integrating N-doped C-dots and TMB into hydrogels. The bracelet is used for monitoring the UV exposure in sunlight. The color change of TMB in the bracelet can be clearly observed by naked eyes or quantified by a smartphone. The bracelet is also used for distinguishing different weather condition such as sunny/cloudy or different place such as indoor/outdoor during a sunny day. This study provides the first example of nanozyme in wearable UV sensor and will stimulate the applications of nanozyme in wearable device.</p></div>","PeriodicalId":277,"journal":{"name":"Chinese Journal of Analytical Chemistry","volume":"52 3","pages":"Article 100377"},"PeriodicalIF":1.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1872204024000227/pdfft?md5=a4c268cd9fcf52567851814905bb63bb&pid=1-s2.0-S1872204024000227-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872204024000227","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, nanozyme is used for monitoring the dose of ultraviolet (UV) in sunlight for the first time. We find that nitrogen-doped carbon dots (N-doped C-dots) can effectively catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) under different UV region including UVA, UVB, and UVC. In comparison, the N-doped C-dots fail to show the catalytic activity under visible light. The finding is applied for distinguishing UV light and visible light through the color change of TMB. More importantly, the photo-oxidation TMB catalyzed by N-doped C-dots can work well in a near neutral pH, which is beneficial for its application in wearable device due to the reducing of acid corrosion. Finally, a wearable bracelet is fabricated by integrating N-doped C-dots and TMB into hydrogels. The bracelet is used for monitoring the UV exposure in sunlight. The color change of TMB in the bracelet can be clearly observed by naked eyes or quantified by a smartphone. The bracelet is also used for distinguishing different weather condition such as sunny/cloudy or different place such as indoor/outdoor during a sunny day. This study provides the first example of nanozyme in wearable UV sensor and will stimulate the applications of nanozyme in wearable device.

Abstract Image

Abstract Image

基于纳米酶的可穿戴设备,用于比色监测日光中的紫外线辐射量
基于掺杂 N 的 C 点在整个紫外线区域(包括 UVA、UVB 和 UVC)都能催化 TMB 氧化的发现,我们开发出了一种用于监测日光中紫外线辐射剂量的可穿戴设备。[显示省略]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
25.00%
发文量
17223
审稿时长
35 days
期刊介绍: Chinese Journal of Analytical Chemistry(CJAC) is an academic journal of analytical chemistry established in 1972 and sponsored by the Chinese Chemical Society and Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. Its objectives are to report the original scientific research achievements and review the recent development of analytical chemistry in all areas. The journal sets up 5 columns including Research Papers, Research Notes, Experimental Technique and Instrument, Review and Progress and Summary Accounts. The journal published monthly in Chinese language. A detailed abstract, keywords and the titles of figures and tables are provided in English, except column of Summary Accounts. Prof. Wang Erkang, an outstanding analytical chemist, academician of Chinese Academy of Sciences & Third World Academy of Sciences, holds the post of the Editor-in-chief.
文献相关原料
公司名称 产品信息 采购帮参考价格
上海源叶 agarose
¥30.00~¥22605.46
上海源叶 TMB
阿拉丁 N-doped graphene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信