Non-Line-of-Sight Optical Communication: Field, Laboratory, and Numerical Experiments in Russia in 2012–2022

IF 0.9 Q4 OPTICS
V. V. Belov, M. V. Tarasenkov, E. S. Poznakharev, A. V. Fedosov, V. N. Abramochkin
{"title":"Non-Line-of-Sight Optical Communication: Field, Laboratory, and Numerical Experiments in Russia in 2012–2022","authors":"V. V. Belov,&nbsp;M. V. Tarasenkov,&nbsp;E. S. Poznakharev,&nbsp;A. V. Fedosov,&nbsp;V. N. Abramochkin","doi":"10.1134/S1024856024010044","DOIUrl":null,"url":null,"abstract":"<p>Experimental and theoretical studies performed in Russia in 2012–2022 on non-line-of-sight optical communication in air and water media are reviewed. The main results of field, laboratory, and numerical experiments in the IR, visible, and UV wavelength ranges are given. In the laboratory experiments, a water-glycerin and atmospheric air mixture was used as scattering media. In the field experiments, optical communication was implemented in the near-surface air layer, as well as in artificial and natural water reservoirs (including through ice in winter). The investigations were performed for coplanar and noncoplanar schemes of communication channels.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856024010044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Experimental and theoretical studies performed in Russia in 2012–2022 on non-line-of-sight optical communication in air and water media are reviewed. The main results of field, laboratory, and numerical experiments in the IR, visible, and UV wavelength ranges are given. In the laboratory experiments, a water-glycerin and atmospheric air mixture was used as scattering media. In the field experiments, optical communication was implemented in the near-surface air layer, as well as in artificial and natural water reservoirs (including through ice in winter). The investigations were performed for coplanar and noncoplanar schemes of communication channels.

Abstract Image

Abstract Image

非视距光通信:2012-2022 年俄罗斯的现场、实验室和数值实验
摘要 回顾了 2012-2022 年俄罗斯在空气和水介质中进行的非视距光通信实验和理论研究。文中给出了在红外、可见光和紫外波长范围内进行的现场、实验室和数值实验的主要结果。在实验室实验中,水-甘油和大气空气混合物被用作散射介质。在现场实验中,在近地面空气层以及人工水库和天然水库(包括冬季通过冰层)中实施了光通信。对通信通道的共面和非共面方案进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
42.90%
发文量
84
期刊介绍: Atmospheric and Oceanic Optics  is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信