M. V. Makarova, D. V. Ionov, H. H. Imkhasin, A. V. Poberovskii, A. V. Polyakov, V. S. Kostsov, B. K. Makarov, S. C. Foka
{"title":"Retrieval of NO2 Tropospheric Column from Ground-Based FTIR Measurements of Direct Solar Radiation","authors":"M. V. Makarova, D. V. Ionov, H. H. Imkhasin, A. V. Poberovskii, A. V. Polyakov, V. S. Kostsov, B. K. Makarov, S. C. Foka","doi":"10.1134/S1024856024010081","DOIUrl":null,"url":null,"abstract":"<p>Based on the analysis of high-resolution FTIR spectra recorded at the atmospheric monitoring station of St. Petersburg State University during 2009–2022, a possibility of deriving the NO<sub>2</sub> tropospheric column from ground-based measurements of direct solar radiation in the mid-IR range is studied. The best agreement (correlation coefficient <i>r</i> = 0.68) with simultaneous DOAS measurements of the NO<sub>2</sub> tropospheric column at the same monitoring station is provided by a retrieval technique based on the use of the spectral range 2914.30–2914.85 cm<sup>−1</sup> in combination with the Tikhonov–Phillips regularization. It is shown that FTIR measurements make it possible to reliably detect high levels of tropospheric NO<sub>2</sub> at the SPbSU monitoring station. Our results can be used at the FTIR stations of the NDACC network for significant expansion of the geography of tropospheric NO<sub>2</sub> monitoring.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":"36 1 supplement","pages":"S51 - S58"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856024010081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Based on the analysis of high-resolution FTIR spectra recorded at the atmospheric monitoring station of St. Petersburg State University during 2009–2022, a possibility of deriving the NO2 tropospheric column from ground-based measurements of direct solar radiation in the mid-IR range is studied. The best agreement (correlation coefficient r = 0.68) with simultaneous DOAS measurements of the NO2 tropospheric column at the same monitoring station is provided by a retrieval technique based on the use of the spectral range 2914.30–2914.85 cm−1 in combination with the Tikhonov–Phillips regularization. It is shown that FTIR measurements make it possible to reliably detect high levels of tropospheric NO2 at the SPbSU monitoring station. Our results can be used at the FTIR stations of the NDACC network for significant expansion of the geography of tropospheric NO2 monitoring.
期刊介绍:
Atmospheric and Oceanic Optics is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.