Room-temperature ferromagnetism and half-metallicity in monolayer orthorhombic CrS2

IF 6.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Bocheng Lei  (, ), Aolin Li  (, ), Wenzhe Zhou  (, ), Yunpeng Wang  (, ), Wei Xiong  (, ), Yu Chen  (, ), Fangping Ouyang  (, )
{"title":"Room-temperature ferromagnetism and half-metallicity in monolayer orthorhombic CrS2","authors":"Bocheng Lei \n (,&nbsp;),&nbsp;Aolin Li \n (,&nbsp;),&nbsp;Wenzhe Zhou \n (,&nbsp;),&nbsp;Yunpeng Wang \n (,&nbsp;),&nbsp;Wei Xiong \n (,&nbsp;),&nbsp;Yu Chen \n (,&nbsp;),&nbsp;Fangping Ouyang \n (,&nbsp;)","doi":"10.1007/s11467-023-1387-y","DOIUrl":null,"url":null,"abstract":"<div><p>Two-dimensional materials with high-temperature ferromagnetism and half-metallicity have the latest applications in spintronic devices. Based on first-principles calculations, we have investigated a novel two-dimensional CrS<sub>2</sub> phase with an orthorhombic lattice. Our results suggest that it is stable in dynamics, thermodynamics, and mechanics. The ground state of monolayer orthorhombic CrS<sub>2</sub> is both ferromagnetic and half-metallic, with a high Curie temperature of 895 K and a large spin-flipping gap on values of 0.804 eV. This room-temperature ferromagnetism and half-metallicity can maintain stability against a strong biaxial strain ranging from −5% to 5%. Meanwhile, increasing strain can significantly maintain the out-of-plane magnetic anisotropy. A density of states analysis, together with the orbital-resolved magnetic anisotropy energy, has revealed that the strain-enhanced MAE is highly related to the 3d-orbital splitting of Cr atoms. Our results suggest the monolayer orthorhombic CrS<sub>2</sub> is an ideal candidate for future spintronics.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"19 4","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11467-023-1387-y","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional materials with high-temperature ferromagnetism and half-metallicity have the latest applications in spintronic devices. Based on first-principles calculations, we have investigated a novel two-dimensional CrS2 phase with an orthorhombic lattice. Our results suggest that it is stable in dynamics, thermodynamics, and mechanics. The ground state of monolayer orthorhombic CrS2 is both ferromagnetic and half-metallic, with a high Curie temperature of 895 K and a large spin-flipping gap on values of 0.804 eV. This room-temperature ferromagnetism and half-metallicity can maintain stability against a strong biaxial strain ranging from −5% to 5%. Meanwhile, increasing strain can significantly maintain the out-of-plane magnetic anisotropy. A density of states analysis, together with the orbital-resolved magnetic anisotropy energy, has revealed that the strain-enhanced MAE is highly related to the 3d-orbital splitting of Cr atoms. Our results suggest the monolayer orthorhombic CrS2 is an ideal candidate for future spintronics.

Abstract Image

单层正交CrS2的室温铁磁性和半金属性
具有高温铁磁性和半金属性的二维材料在自旋电子器件中有着最新的应用。基于第一原理计算,我们研究了一种具有正交晶格的新型二维 CrS2 相。我们的研究结果表明,它在动力学、热力学和力学方面都很稳定。单层正方晶格 CrS2 的基态具有铁磁性和半金属性,居里温度高达 895 K,自旋翻转间隙高达 0.804 eV。这种室温铁磁性和半金属性可在-5%至5%的强双轴应变下保持稳定。同时,增加应变可显著保持面外磁各向异性。结合轨道分辨磁各向异性能进行的状态密度分析表明,应变增强的 MAE 与铬原子的 3d 轨道分裂高度相关。我们的研究结果表明,单层正交面体 CrS2 是未来自旋电子学的理想候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers of Physics
Frontiers of Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
9.20
自引率
9.30%
发文量
898
审稿时长
6-12 weeks
期刊介绍: Frontiers of Physics is an international peer-reviewed journal dedicated to showcasing the latest advancements and significant progress in various research areas within the field of physics. The journal's scope is broad, covering a range of topics that include: Quantum computation and quantum information Atomic, molecular, and optical physics Condensed matter physics, material sciences, and interdisciplinary research Particle, nuclear physics, astrophysics, and cosmology The journal's mission is to highlight frontier achievements, hot topics, and cross-disciplinary points in physics, facilitating communication and idea exchange among physicists both in China and internationally. It serves as a platform for researchers to share their findings and insights, fostering collaboration and innovation across different areas of physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信