Matrix Continued Fractions Associated with Lattice Paths, Resolvents of Difference Operators, and Random Polynomials

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
J. Kim, A. López-García, V. A. Prokhorov
{"title":"Matrix Continued Fractions Associated with Lattice Paths, Resolvents of Difference Operators, and Random Polynomials","authors":"J. Kim, A. López-García, V. A. Prokhorov","doi":"10.1007/s00365-024-09685-1","DOIUrl":null,"url":null,"abstract":"<p>We begin our analysis with the study of two collections of lattice paths in the plane, denoted <span>\\({\\mathcal {D}}_{[n,i,j]}\\)</span> and <span>\\({\\mathcal {P}}_{[n,i,j]}\\)</span>. These paths consist of sequences of <i>n</i> steps, where each step allows movement in three directions: upward (with a maximum displacement of <i>q</i> units), rightward (exactly one unit), or downward (with a maximum displacement of <i>p</i> units). The paths start from the point (0, <i>i</i>) and end at the point (<i>n</i>, <i>j</i>). In the collection <span>\\({\\mathcal {D}}_{[n,i,j]}\\)</span>, it is a crucial constraint that paths never go below the <i>x</i>-axis, while in the collection <span>\\({\\mathcal {P}}_{[n,i,j]}\\)</span>, paths have no such restriction. We assign weights to each path in both collections and introduce weight polynomials and generating series for them. Our main results demonstrate that certain matrices of size <span>\\(q\\times p\\)</span> associated with these generating series can be expressed as matrix continued fractions. These results extend the notable contributions previously made by Flajolet (Discrete Math 32:125–161, 1980) and Viennot (Une Théorie Combinatoire des Polynômes Orthogonaux Généraux. University of Quebec at Montreal, Lecture Notes, 1983) in the scalar case <span>\\(p=q=1\\)</span>. The generating series can also be interpreted as resolvents of one-sided or two-sided difference operators of finite order. Additionally, we analyze a class of random banded matrices <i>H</i>, which have <span>\\(p+q+1\\)</span> diagonals with entries that are independent and bounded random variables. These random variables have identical distributions along diagonals. We investigate the asymptotic behavior of the expected values of eigenvalue moments for the principal <span>\\(n\\times n\\)</span> truncation of <i>H</i> as <i>n</i> tends to infinity.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00365-024-09685-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We begin our analysis with the study of two collections of lattice paths in the plane, denoted \({\mathcal {D}}_{[n,i,j]}\) and \({\mathcal {P}}_{[n,i,j]}\). These paths consist of sequences of n steps, where each step allows movement in three directions: upward (with a maximum displacement of q units), rightward (exactly one unit), or downward (with a maximum displacement of p units). The paths start from the point (0, i) and end at the point (nj). In the collection \({\mathcal {D}}_{[n,i,j]}\), it is a crucial constraint that paths never go below the x-axis, while in the collection \({\mathcal {P}}_{[n,i,j]}\), paths have no such restriction. We assign weights to each path in both collections and introduce weight polynomials and generating series for them. Our main results demonstrate that certain matrices of size \(q\times p\) associated with these generating series can be expressed as matrix continued fractions. These results extend the notable contributions previously made by Flajolet (Discrete Math 32:125–161, 1980) and Viennot (Une Théorie Combinatoire des Polynômes Orthogonaux Généraux. University of Quebec at Montreal, Lecture Notes, 1983) in the scalar case \(p=q=1\). The generating series can also be interpreted as resolvents of one-sided or two-sided difference operators of finite order. Additionally, we analyze a class of random banded matrices H, which have \(p+q+1\) diagonals with entries that are independent and bounded random variables. These random variables have identical distributions along diagonals. We investigate the asymptotic behavior of the expected values of eigenvalue moments for the principal \(n\times n\) truncation of H as n tends to infinity.

Abstract Image

与晶格路径、差分算子的残差和随机多项式相关的矩阵续分数
我们首先分析平面上的两个网格路径集合,分别表示为 \({\mathcal {D}}_{[n,i,j]}\) 和 \({\mathcal {P}}_{[n,i,j]}\) 。这些路径由 n 个步长的序列组成,其中每个步长允许向三个方向移动:向上(最大位移为 q 个单位)、向右(正好一个单位)或向下(最大位移为 p 个单位)。路径的起点是(0,i),终点是(n,j)。在集合({\mathcal {D}}_{[n,i,j]}/)中,路径永远不会低于 x 轴是一个重要的约束条件,而在({\mathcal {P}}_{[n,i,j]}/)集合中,路径没有这样的限制。我们为这两个集合中的每条路径分配权重,并引入权重多项式和它们的产生数列。我们的主要结果表明,与这些产生数列相关的某些大小为 \(q\times p\) 的矩阵可以用矩阵续分表示。这些结果扩展了 Flajolet (Discrete Math 32:125-161, 1980) 和 Viennot (Une Théorie Combinatoire des Polynômes Orthogonaux Généraux.魁北克大学蒙特利尔分校讲义,1983 年)中的标量情况 \(p=q=1\)。生成序列也可以解释为有限阶的单边或两边差分算子的解析子。此外,我们还分析了一类随机带状矩阵 H,它们有 \(p+q+1\) 对角线,其条目是独立且有界的随机变量。这些随机变量沿对角线具有相同的分布。我们研究了当 n 趋于无穷大时,H 的主(n\times n\ )截断特征值矩的期望值的渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信