A universal non-Hermitian platform for bound state in the continuum enhanced wireless power transfer

IF 6.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
{"title":"A universal non-Hermitian platform for bound state in the continuum enhanced wireless power transfer","authors":"","doi":"10.1007/s11467-023-1388-x","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Non-Hermitian systems with parity–time (PT)-symmetry have been extensively studied and rapidly developed in resonance wireless power transfer (WPT). The WPT system that satisfies PT-symmetry always has real eigenvalues, which promote efficient energy transfer. However, meeting the condition of PT-symmetry is one of the most puzzling issues. Stable power transfer under different transmission conditions is also a great challenge. Bound state in the continuum (BIC) supporting extreme quality-factor mode provides an opportunity for efficient WPT. Here, we propose theoretically and demonstrate experimentally that BIC widely exists in resonance-coupled systems without PT-symmetry, and it can even realize more stable and efficient power transfer than PT-symmetric systems. Importantly, BIC for efficient WPT is universal and suitable in standard second-order and even high-order WPT systems. Our results not only extend non-Hermitian physics beyond PT-symmetry, but also bridge the gap between BIC and practical application engineering, such as highperformance WPT, wireless sensing and communications.</p> <span> <span> <img alt=\"\" src=\"https://static-content.springer.com/image/MediaObjects/11467_2023_1388_Fig1_HTML.jpg\"/> </span> </span>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11467-023-1388-x","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Non-Hermitian systems with parity–time (PT)-symmetry have been extensively studied and rapidly developed in resonance wireless power transfer (WPT). The WPT system that satisfies PT-symmetry always has real eigenvalues, which promote efficient energy transfer. However, meeting the condition of PT-symmetry is one of the most puzzling issues. Stable power transfer under different transmission conditions is also a great challenge. Bound state in the continuum (BIC) supporting extreme quality-factor mode provides an opportunity for efficient WPT. Here, we propose theoretically and demonstrate experimentally that BIC widely exists in resonance-coupled systems without PT-symmetry, and it can even realize more stable and efficient power transfer than PT-symmetric systems. Importantly, BIC for efficient WPT is universal and suitable in standard second-order and even high-order WPT systems. Our results not only extend non-Hermitian physics beyond PT-symmetry, but also bridge the gap between BIC and practical application engineering, such as highperformance WPT, wireless sensing and communications.

Abstract Image
连续增强型无线电力传输中约束态的通用非赫米提平台
摘要 具有奇偶时(PT)对称性的非ermitian 系统在共振无线电力传输(WPT)领域得到了广泛研究和快速发展。满足 PT 对称性的 WPT 系统总是具有实特征值,能促进有效的能量传输。然而,如何满足 PT 对称性条件是最令人困惑的问题之一。不同传输条件下的稳定功率传输也是一个巨大的挑战。支持极端品质因数模式的连续体中的边界态(BIC)为高效 WPT 提供了机会。在此,我们从理论上提出并通过实验证明,BIC 广泛存在于无 PT 对称的共振耦合系统中,甚至可以实现比 PT 对称系统更稳定、更高效的功率传输。重要的是,用于高效 WPT 的 BIC 具有普遍性,适用于标准二阶甚至高阶 WPT 系统。我们的成果不仅将非赫米提物理学扩展到了 PT 对称之外,而且还在 BIC 与高性能 WPT、无线传感和通信等实际应用工程之间架起了一座桥梁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers of Physics
Frontiers of Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
9.20
自引率
9.30%
发文量
898
审稿时长
6-12 weeks
期刊介绍: Frontiers of Physics is an international peer-reviewed journal dedicated to showcasing the latest advancements and significant progress in various research areas within the field of physics. The journal's scope is broad, covering a range of topics that include: Quantum computation and quantum information Atomic, molecular, and optical physics Condensed matter physics, material sciences, and interdisciplinary research Particle, nuclear physics, astrophysics, and cosmology The journal's mission is to highlight frontier achievements, hot topics, and cross-disciplinary points in physics, facilitating communication and idea exchange among physicists both in China and internationally. It serves as a platform for researchers to share their findings and insights, fostering collaboration and innovation across different areas of physics.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信