{"title":"Artificial intelligence and scientific discovery: a model of prioritized search","authors":"Ajay Agrawal , John McHale , Alexander Oettl","doi":"10.1016/j.respol.2024.104989","DOIUrl":null,"url":null,"abstract":"<div><p>We model a key step in the innovation process, hypothesis generation, as the making of predictions over a vast combinatorial space. Traditionally, scientists and innovators use theory or intuition to guide their search. Increasingly, however, they use artificial intelligence (AI) instead. We model innovation as resulting from sequential search over a combinatorial design space, where the prioritization of costly tests is achieved using a predictive model. The predictive model's ranked output is represented as a hazard function. Discrete survival analysis is used to obtain the main innovation outcomes of interest – the probability of innovation, expected search duration, and expected profit. We describe conditions under which shifting from the traditional method of hypothesis generation, using theory or intuition, to instead using AI that generates higher fidelity predictions, results in a higher likelihood of successful innovation, shorter search durations, and higher expected profits. We then explore the complementarity between hypothesis generation and hypothesis testing; potential gains from AI may not be realized without significant investment in testing capacity. We discuss the policy implications.</p></div>","PeriodicalId":48466,"journal":{"name":"Research Policy","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Policy","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048733324000386","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0
Abstract
We model a key step in the innovation process, hypothesis generation, as the making of predictions over a vast combinatorial space. Traditionally, scientists and innovators use theory or intuition to guide their search. Increasingly, however, they use artificial intelligence (AI) instead. We model innovation as resulting from sequential search over a combinatorial design space, where the prioritization of costly tests is achieved using a predictive model. The predictive model's ranked output is represented as a hazard function. Discrete survival analysis is used to obtain the main innovation outcomes of interest – the probability of innovation, expected search duration, and expected profit. We describe conditions under which shifting from the traditional method of hypothesis generation, using theory or intuition, to instead using AI that generates higher fidelity predictions, results in a higher likelihood of successful innovation, shorter search durations, and higher expected profits. We then explore the complementarity between hypothesis generation and hypothesis testing; potential gains from AI may not be realized without significant investment in testing capacity. We discuss the policy implications.
期刊介绍:
Research Policy (RP) articles explore the interaction between innovation, technology, or research, and economic, social, political, and organizational processes, both empirically and theoretically. All RP papers are expected to provide insights with implications for policy or management.
Research Policy (RP) is a multidisciplinary journal focused on analyzing, understanding, and effectively addressing the challenges posed by innovation, technology, R&D, and science. This includes activities related to knowledge creation, diffusion, acquisition, and exploitation in the form of new or improved products, processes, or services, across economic, policy, management, organizational, and environmental dimensions.