Intrinsic and extrinsic actions of human neural progenitors with SUFU inhibition promote tissue repair and functional recovery from severe spinal cord injury.
Yong-Long Chen, Xiang-Lan Feng, Kin-Wai Tam, Chao-Yang Fan, May Pui-Lai Cheung, Yong-Ting Yang, Stanley Wong, Daisy Kwok-Yan Shum, Ying-Shing Chan, Chi-Wai Cheung, Martin Cheung, Jessica Aijia Liu
{"title":"Intrinsic and extrinsic actions of human neural progenitors with SUFU inhibition promote tissue repair and functional recovery from severe spinal cord injury.","authors":"Yong-Long Chen, Xiang-Lan Feng, Kin-Wai Tam, Chao-Yang Fan, May Pui-Lai Cheung, Yong-Ting Yang, Stanley Wong, Daisy Kwok-Yan Shum, Ying-Shing Chan, Chi-Wai Cheung, Martin Cheung, Jessica Aijia Liu","doi":"10.1038/s41536-024-00352-4","DOIUrl":null,"url":null,"abstract":"<p><p>Neural progenitor cells (NPCs) derived from human pluripotent stem cells(hPSCs) provide major cell sources for repairing damaged neural circuitry and enabling axonal regeneration after spinal cord injury (SCI). However, the injury niche and inadequate intrinsic factors in the adult spinal cord restrict the therapeutic potential of transplanted NPCs. The Sonic Hedgehog protein (Shh) has crucial roles in neurodevelopment by promoting the formation of motorneurons and oligodendrocytes as well as its recently described neuroprotective features in response to the injury, indicating its essential role in neural homeostasis and tissue repair. In this study, we demonstrate that elevated SHH signaling in hNPCs by inhibiting its negative regulator, SUFU, enhanced cell survival and promoted robust neuronal differentiation with extensive axonal outgrowth, counteracting the harmful effects of the injured niche. Importantly, SUFU inhibition in NPCs exert non-cell autonomous effects on promoting survival and neurogenesis of endogenous cells and modulating the microenvironment by reducing suppressive barriers around lesion sites. The combined beneficial effects of SUFU inhibition in hNPCs resulted in the effective reconstruction of neuronal connectivity with the host and corticospinal regeneration, significantly improving neurobehavioral recovery in recipient animals. These results demonstrate that SUFU inhibition confers hNPCs with potent therapeutic potential to overcome extrinsic and intrinsic barriers in transplantation treatments for SCI.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"9 1","pages":"13"},"PeriodicalIF":6.4000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10959923/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Regenerative Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41536-024-00352-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Neural progenitor cells (NPCs) derived from human pluripotent stem cells(hPSCs) provide major cell sources for repairing damaged neural circuitry and enabling axonal regeneration after spinal cord injury (SCI). However, the injury niche and inadequate intrinsic factors in the adult spinal cord restrict the therapeutic potential of transplanted NPCs. The Sonic Hedgehog protein (Shh) has crucial roles in neurodevelopment by promoting the formation of motorneurons and oligodendrocytes as well as its recently described neuroprotective features in response to the injury, indicating its essential role in neural homeostasis and tissue repair. In this study, we demonstrate that elevated SHH signaling in hNPCs by inhibiting its negative regulator, SUFU, enhanced cell survival and promoted robust neuronal differentiation with extensive axonal outgrowth, counteracting the harmful effects of the injured niche. Importantly, SUFU inhibition in NPCs exert non-cell autonomous effects on promoting survival and neurogenesis of endogenous cells and modulating the microenvironment by reducing suppressive barriers around lesion sites. The combined beneficial effects of SUFU inhibition in hNPCs resulted in the effective reconstruction of neuronal connectivity with the host and corticospinal regeneration, significantly improving neurobehavioral recovery in recipient animals. These results demonstrate that SUFU inhibition confers hNPCs with potent therapeutic potential to overcome extrinsic and intrinsic barriers in transplantation treatments for SCI.
期刊介绍:
Regenerative Medicine, an innovative online-only journal, aims to advance research in the field of repairing and regenerating damaged tissues and organs within the human body. As a part of the prestigious Nature Partner Journals series and in partnership with ARMI, this high-quality, open access journal serves as a platform for scientists to explore effective therapies that harness the body's natural regenerative capabilities. With a focus on understanding the fundamental mechanisms of tissue damage and regeneration, npj Regenerative Medicine actively encourages studies that bridge the gap between basic research and clinical tissue repair strategies.