Homeostatic regulation of renewing tissue cell populations via crowding control: stability, robustness and quasi-dedifferentiation.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Cristina Parigini, Philip Greulich
{"title":"Homeostatic regulation of renewing tissue cell populations via crowding control: stability, robustness and quasi-dedifferentiation.","authors":"Cristina Parigini, Philip Greulich","doi":"10.1007/s00285-024-02057-0","DOIUrl":null,"url":null,"abstract":"<p><p>To maintain renewing epithelial tissues in a healthy, homeostatic state, cell divisions and differentiation need to be tightly regulated. Mechanisms of homeostatic regulation often rely on crowding feedback control: cells are able to sense the cell density in their environment, via various molecular and mechanosensing pathways, and respond by adjusting division, differentiation, and cell state transitions appropriately. Here, we determine, via a mathematically rigorous framework, which general conditions for the crowding feedback regulation (i) must be minimally met, and (ii) are sufficient, to allow the maintenance of homeostasis in renewing tissues. We show that those conditions naturally allow for a degree of robustness toward disruption of regulation. Furthermore, intrinsic to this feedback regulation is that stem cell identity is established collectively by the cell population, not by individual cells, which implies the possibility of 'quasi-dedifferentiation', in which cells committed to differentiation may reacquire stem cell properties upon depletion of the stem cell pool. These findings can guide future experimental campaigns to identify specific crowding feedback mechanisms.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10960778/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02057-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

To maintain renewing epithelial tissues in a healthy, homeostatic state, cell divisions and differentiation need to be tightly regulated. Mechanisms of homeostatic regulation often rely on crowding feedback control: cells are able to sense the cell density in their environment, via various molecular and mechanosensing pathways, and respond by adjusting division, differentiation, and cell state transitions appropriately. Here, we determine, via a mathematically rigorous framework, which general conditions for the crowding feedback regulation (i) must be minimally met, and (ii) are sufficient, to allow the maintenance of homeostasis in renewing tissues. We show that those conditions naturally allow for a degree of robustness toward disruption of regulation. Furthermore, intrinsic to this feedback regulation is that stem cell identity is established collectively by the cell population, not by individual cells, which implies the possibility of 'quasi-dedifferentiation', in which cells committed to differentiation may reacquire stem cell properties upon depletion of the stem cell pool. These findings can guide future experimental campaigns to identify specific crowding feedback mechanisms.

Abstract Image

通过拥挤控制对更新组织细胞群进行平衡调节:稳定性、稳健性和准分化。
为了使不断更新的上皮组织保持健康的平衡状态,需要对细胞分裂和分化进行严格调控。平衡调节机制通常依赖于拥挤反馈控制:细胞能够通过各种分子和机械传感途径感知周围环境中的细胞密度,并通过适当调整分裂、分化和细胞状态转换做出反应。在这里,我们通过一个数学上严谨的框架,确定了拥挤反馈调节的一般条件(i)必须最低限度地满足,以及(ii)足以维持更新组织中的平衡。我们表明,这些条件自然允许一定程度的稳健性,以应对调节的破坏。此外,这种反馈调节的本质是干细胞身份由细胞群而非单个细胞集体建立,这意味着 "准去分化 "的可能性,即致力于分化的细胞可能在干细胞池耗竭后重新获得干细胞特性。这些发现可指导未来的实验活动,以确定特定的拥挤反馈机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信