Hanxia Huang, Krishnamurthy Konduru, Veronica Solovena, Zhao-Hua Zhou, Namita Kumari, Kazuyo Takeda, Sergei Nekhai, Sina Bavari, Gerardo G Kaplan, Kenneth M Yamada, Subhash Dhawan
{"title":"Therapeutic potential of the heme oxygenase-1 inducer hemin against Ebola virus infection.","authors":"Hanxia Huang, Krishnamurthy Konduru, Veronica Solovena, Zhao-Hua Zhou, Namita Kumari, Kazuyo Takeda, Sergei Nekhai, Sina Bavari, Gerardo G Kaplan, Kenneth M Yamada, Subhash Dhawan","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Promising drugs to treat Ebola virus (EBOV) infection are currently being developed, but so far none has shown efficacy in clinical trials. Drugs that can stimulate host innate defense responses may retard the progression of EBOV disease. We report here the dramatic effect of hemin, the natural inducer of the heme catabolic enzyme heme oxygenase-1 (HO-1), in the reduction of EBOV replication. Treatment of primary monocyte-derived macrophages (MDM), Vero E6 cells, HeLa cells, and human foreskin fibroblasts (HFF1) with hemin reduced EBOV infection by >90%, and showed minimal toxicity to infected cells. Inhibition of HO-1 enzymatic activity and silencing HO-1 expression prevented the hemin-mediated suppression of EBOV infection, suggesting an important role for induction of this intracellular mediator in restricting EBOV replication. The inverse correlation between hemin-induced HO-1 and EBOV replication provides a potentially useful therapeutic modality based on the stimulation of an innate cellular response against Ebola infection.</p>","PeriodicalId":34989,"journal":{"name":"Current Trends in Immunology","volume":"17 ","pages":"117-123"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5267496/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Trends in Immunology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Promising drugs to treat Ebola virus (EBOV) infection are currently being developed, but so far none has shown efficacy in clinical trials. Drugs that can stimulate host innate defense responses may retard the progression of EBOV disease. We report here the dramatic effect of hemin, the natural inducer of the heme catabolic enzyme heme oxygenase-1 (HO-1), in the reduction of EBOV replication. Treatment of primary monocyte-derived macrophages (MDM), Vero E6 cells, HeLa cells, and human foreskin fibroblasts (HFF1) with hemin reduced EBOV infection by >90%, and showed minimal toxicity to infected cells. Inhibition of HO-1 enzymatic activity and silencing HO-1 expression prevented the hemin-mediated suppression of EBOV infection, suggesting an important role for induction of this intracellular mediator in restricting EBOV replication. The inverse correlation between hemin-induced HO-1 and EBOV replication provides a potentially useful therapeutic modality based on the stimulation of an innate cellular response against Ebola infection.
期刊介绍:
Computers and Electronics in Agriculture provides international coverage of advances in the development and application of computer hardware, software, electronic instrumentation, and control systems for solving problems in agriculture, including agronomy, horticulture (in both its food and amenity aspects), forestry, aquaculture, and animal/livestock farming. The journal publishes original papers, reviews, and applications notes on topics pertaining to advances in the use of computers or electronics in plant or animal agricultural production, including agricultural soils, water, pests, controlled environments, structures, and wastes, as well as the plants and animals themselves. Post-harvest operations considered part of agriculture (such as drying, storage, logistics, production assessment, trimming and separation of plant and animal material) are also covered. Relevant areas of technology include artificial intelligence, sensors, machine vision, robotics, networking, and simulation modelling.