Structural rearrangements as a recurrent pathogenic mechanism for SETBP1 haploinsufficiency.

IF 3.8 3区 医学 Q2 GENETICS & HEREDITY
V Alesi, S Genovese, M C Roberti, E Sallicandro, S Di Tommaso, S Loddo, V Orlando, D Pompili, C Calacci, V Mei, E Pisaneschi, M V Faggiano, A Morgia, C Mammì, G Astrea, R Battini, M Priolo, M L Dentici, R Milone, A Novelli
{"title":"Structural rearrangements as a recurrent pathogenic mechanism for SETBP1 haploinsufficiency.","authors":"V Alesi, S Genovese, M C Roberti, E Sallicandro, S Di Tommaso, S Loddo, V Orlando, D Pompili, C Calacci, V Mei, E Pisaneschi, M V Faggiano, A Morgia, C Mammì, G Astrea, R Battini, M Priolo, M L Dentici, R Milone, A Novelli","doi":"10.1186/s40246-024-00600-0","DOIUrl":null,"url":null,"abstract":"<p><p>Chromosomal structural rearrangements consist of anomalies in genomic architecture that may or may not be associated with genetic material gain and loss. Evaluating the precise breakpoint is crucial from a diagnostic point of view, highlighting possible gene disruption and addressing to appropriate genotype-phenotype association. Structural rearrangements can either occur randomly within the genome or present with a recurrence, mainly due to peculiar genomic features of the surrounding regions. We report about three non-related individuals, harboring chromosomal structural rearrangements interrupting SETBP1, leading to gene haploinsufficiency. Two out of them resulted negative to Chromosomal Microarray Analysis (CMA), being the rearrangement balanced at a microarray resolution. The third one, presenting with a complex three-chromosome rearrangement, had been previously diagnosed with SETBP1 haploinsufficiency due to a partial gene deletion at one of the chromosomal breakpoints. We thoroughly characterized the rearrangements by means of Optical Genome Mapping (OGM) and Whole Genome Sequencing (WGS), providing details about the involved sequences and the underlying mechanisms. We propose structural variants as a recurrent event in SETBP1 haploinsufficiency, which may be overlooked by laboratory routine genomic analyses (CMA and Whole Exome Sequencing) or only partially determined when associated with genomic losses at breakpoints. We finally introduce a possible role of SETBP1 in a Noonan-like phenotype.</p>","PeriodicalId":13183,"journal":{"name":"Human Genomics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10960460/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40246-024-00600-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Chromosomal structural rearrangements consist of anomalies in genomic architecture that may or may not be associated with genetic material gain and loss. Evaluating the precise breakpoint is crucial from a diagnostic point of view, highlighting possible gene disruption and addressing to appropriate genotype-phenotype association. Structural rearrangements can either occur randomly within the genome or present with a recurrence, mainly due to peculiar genomic features of the surrounding regions. We report about three non-related individuals, harboring chromosomal structural rearrangements interrupting SETBP1, leading to gene haploinsufficiency. Two out of them resulted negative to Chromosomal Microarray Analysis (CMA), being the rearrangement balanced at a microarray resolution. The third one, presenting with a complex three-chromosome rearrangement, had been previously diagnosed with SETBP1 haploinsufficiency due to a partial gene deletion at one of the chromosomal breakpoints. We thoroughly characterized the rearrangements by means of Optical Genome Mapping (OGM) and Whole Genome Sequencing (WGS), providing details about the involved sequences and the underlying mechanisms. We propose structural variants as a recurrent event in SETBP1 haploinsufficiency, which may be overlooked by laboratory routine genomic analyses (CMA and Whole Exome Sequencing) or only partially determined when associated with genomic losses at breakpoints. We finally introduce a possible role of SETBP1 in a Noonan-like phenotype.

结构重排是 SETBP1 单倍体缺乏症反复出现的致病机制。
染色体结构重排包括基因组结构的异常,可能与遗传物质的增减有关,也可能无关。从诊断的角度来看,评估精确的断点至关重要,它可以突出可能的基因干扰,并解决适当的基因型与表型的关联问题。结构重排既可能在基因组内随机发生,也可能反复出现,这主要是由于周围区域的基因组特征特殊。我们报告了三个非亲缘关系的个体,他们的染色体结构重排中断了 SETBP1,导致基因单倍性缺陷。其中两人的染色体微阵列分析(CMA)结果为阴性,在微阵列分辨率下重排是平衡的。第三例出现了复杂的三染色体重排,之前曾被诊断为 SETBP1 单倍体缺陷,原因是其中一个染色体断点上存在部分基因缺失。我们通过光学基因组图谱(OGM)和全基因组测序(WGS)对重排进行了全面鉴定,提供了所涉及序列和潜在机制的详细信息。我们认为结构变异是 SETBP1 单倍性贫血的一个经常性事件,实验室常规基因组分析(CMA 和全外显子组测序)可能会忽略这些变异,或者在断点基因组缺失时只能部分确定这些变异。最后,我们介绍了 SETBP1 在努南样表型中可能扮演的角色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Human Genomics
Human Genomics GENETICS & HEREDITY-
CiteScore
6.00
自引率
2.20%
发文量
55
审稿时长
11 weeks
期刊介绍: Human Genomics is a peer-reviewed, open access, online journal that focuses on the application of genomic analysis in all aspects of human health and disease, as well as genomic analysis of drug efficacy and safety, and comparative genomics. Topics covered by the journal include, but are not limited to: pharmacogenomics, genome-wide association studies, genome-wide sequencing, exome sequencing, next-generation deep-sequencing, functional genomics, epigenomics, translational genomics, expression profiling, proteomics, bioinformatics, animal models, statistical genetics, genetic epidemiology, human population genetics and comparative genomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信